Lines
85.63 %
Functions
75.08 %
Branches
100 %
#![cfg_attr(docsrs, feature(doc_auto_cfg, doc_cfg))]
#![doc = include_str!("../README.md")]
// @@ begin lint list maintained by maint/add_warning @@
#![allow(renamed_and_removed_lints)] // @@REMOVE_WHEN(ci_arti_stable)
#![allow(unknown_lints)] // @@REMOVE_WHEN(ci_arti_nightly)
#![warn(missing_docs)]
#![warn(noop_method_call)]
#![warn(unreachable_pub)]
#![warn(clippy::all)]
#![deny(clippy::await_holding_lock)]
#![deny(clippy::cargo_common_metadata)]
#![deny(clippy::cast_lossless)]
#![deny(clippy::checked_conversions)]
#![warn(clippy::cognitive_complexity)]
#![deny(clippy::debug_assert_with_mut_call)]
#![deny(clippy::exhaustive_enums)]
#![deny(clippy::exhaustive_structs)]
#![deny(clippy::expl_impl_clone_on_copy)]
#![deny(clippy::fallible_impl_from)]
#![deny(clippy::implicit_clone)]
#![deny(clippy::large_stack_arrays)]
#![warn(clippy::manual_ok_or)]
#![deny(clippy::missing_docs_in_private_items)]
#![warn(clippy::needless_borrow)]
#![warn(clippy::needless_pass_by_value)]
#![warn(clippy::option_option)]
#![deny(clippy::print_stderr)]
#![deny(clippy::print_stdout)]
#![warn(clippy::rc_buffer)]
#![deny(clippy::ref_option_ref)]
#![warn(clippy::semicolon_if_nothing_returned)]
#![warn(clippy::trait_duplication_in_bounds)]
#![deny(clippy::unchecked_duration_subtraction)]
#![deny(clippy::unnecessary_wraps)]
#![warn(clippy::unseparated_literal_suffix)]
#![deny(clippy::unwrap_used)]
#![allow(clippy::let_unit_value)] // This can reasonably be done for explicitness
#![allow(clippy::uninlined_format_args)]
#![allow(clippy::significant_drop_in_scrutinee)] // arti/-/merge_requests/588/#note_2812945
#![allow(clippy::result_large_err)] // temporary workaround for arti#587
#![allow(clippy::needless_raw_string_hashes)] // complained-about code is fine, often best
#![allow(clippy::needless_lifetimes)] // See arti#1765
//! <!-- @@ end lint list maintained by maint/add_warning @@ -->
use derive_more::{Add, Display, Div, From, FromStr, Mul};
use std::time::Duration;
use thiserror::Error;
#[cfg(feature = "memquota-memcost")]
use {derive_deftly::Deftly, tor_memquota::derive_deftly_template_HasMemoryCost};
/// Conversion errors from converting a value into a [`BoundedInt32`].
#[derive(Debug, Clone, PartialEq, Eq, Error)]
#[non_exhaustive]
pub enum Error {
/// A passed value was below the lower bound for the type.
#[error("Value {0} was below the lower bound {1} for this type")]
BelowLowerBound(i32, i32),
/// A passed value was above the upper bound for the type.
#[error("Value {0} was above the lower bound {1} for this type")]
AboveUpperBound(i32, i32),
/// Tried to convert a negative value to an unsigned type.
#[error("Tried to convert a negative value to an unsigned type")]
Negative,
/// Tried to parse a value that was not representable as the
/// underlying type.
#[error("Value could not be represented as an i32")]
Unrepresentable,
/// We encountered some kind of integer overflow when converting a number.
#[error("Integer overflow")]
Overflow,
/// Tried to instantiate an uninhabited type.
#[error("No value is valid for this type")]
Uninhabited,
}
/// A 32-bit signed integer with a restricted range.
///
/// This type holds an i32 value such that `LOWER` <= value <= `UPPER`
/// # Limitations
/// If you try to instantiate this type with LOWER > UPPER, you will
/// get an uninhabitable type. It would be better if we could check that at
/// compile time, and prevent such types from being named.
//
// [TODO: If you need a Bounded* for some type other than i32, ask nickm:
// he has an implementation kicking around.]
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
#[cfg_attr(
feature = "memquota-memcost",
derive(Deftly),
derive_deftly(HasMemoryCost)
)]
pub struct BoundedInt32<const LOWER: i32, const UPPER: i32> {
/// Interior Value
value: i32,
impl<const LOWER: i32, const UPPER: i32> BoundedInt32<LOWER, UPPER> {
/// Lower bound
pub const LOWER: i32 = LOWER;
/// Upper bound
pub const UPPER: i32 = UPPER;
/// Private constructor function for this type.
fn unchecked_new(value: i32) -> Self {
assert!(LOWER <= UPPER); //The compiler optimizes this out, no run-time cost.
BoundedInt32 { value }
/// Return the underlying i32 value.
/// This value will always be between [`Self::LOWER`] and [`Self::UPPER`],
/// inclusive.
pub fn get(&self) -> i32 {
self.value
/// If `val` is within range, return a new `BoundedInt32` wrapping
/// it; otherwise, clamp it to the upper or lower bound as
/// appropriate.
pub fn saturating_new(val: i32) -> Self {
Self::unchecked_new(Self::clamp(val))
/// If `val` is an acceptable value inside the range for this type,
/// return a new [`BoundedInt32`]. Otherwise return an error.
pub fn checked_new(val: i32) -> Result<Self, Error> {
if val > UPPER {
Err(Error::AboveUpperBound(val, UPPER))
} else if val < LOWER {
Err(Error::BelowLowerBound(val, LOWER))
} else {
Ok(BoundedInt32::unchecked_new(val))
/// This private function clamps an input to the acceptable range.
fn clamp(val: i32) -> i32 {
Ord::clamp(val, LOWER, UPPER)
/// Convert from the underlying type, clamping to the upper or
/// lower bound if needed.
/// # Panics
/// This function will panic if UPPER < LOWER.
pub fn saturating_from(val: i32) -> Self {
/// Convert from a string, clamping to the upper or lower bound if needed.
/// If the input is a number that cannot be represented as an i32,
/// then we return an error instead of clamping it.
pub fn saturating_from_str(s: &str) -> Result<Self, Error> {
if UPPER < LOWER {
// The compiler should optimize this block out at compile time.
return Err(Error::Uninhabited);
let val: i32 = s.parse().map_err(|_| Error::Unrepresentable)?;
Ok(Self::saturating_from(val))
impl<const L: i32, const U: i32> std::fmt::Display for BoundedInt32<L, U> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.value)
impl<const L: i32, const U: i32> From<BoundedInt32<L, U>> for i32 {
fn from(val: BoundedInt32<L, U>) -> i32 {
val.value
impl<const L: i32, const U: i32> From<BoundedInt32<L, U>> for f64 {
fn from(val: BoundedInt32<L, U>) -> f64 {
val.value.into()
impl<const L: i32, const H: i32> TryFrom<i32> for BoundedInt32<L, H> {
type Error = Error;
fn try_from(val: i32) -> Result<Self, Self::Error> {
Self::checked_new(val)
impl<const L: i32, const H: i32> std::str::FromStr for BoundedInt32<L, H> {
type Err = Error;
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
Self::checked_new(s.parse().map_err(|_| Error::Unrepresentable)?)
impl From<BoundedInt32<0, 1>> for bool {
fn from(val: BoundedInt32<0, 1>) -> bool {
val.value == 1
impl From<BoundedInt32<0, 255>> for u8 {
fn from(val: BoundedInt32<0, 255>) -> u8 {
val.value as u8
impl<const H: i32> From<BoundedInt32<0, H>> for u32 {
fn from(val: BoundedInt32<0, H>) -> u32 {
val.value as u32
impl<const H: i32> From<BoundedInt32<1, H>> for u32 {
fn from(val: BoundedInt32<1, H>) -> u32 {
impl<const L: i32, const H: i32> TryFrom<BoundedInt32<L, H>> for u64 {
fn try_from(val: BoundedInt32<L, H>) -> Result<Self, Self::Error> {
if val.value < 0 {
Err(Error::Negative)
Ok(val.value as u64)
impl<const L: i32, const H: i32> TryFrom<BoundedInt32<L, H>> for usize {
Ok(val.value as usize)
/// A percentage value represented as a number.
/// This type wraps an underlying numeric type, and ensures that callers
/// are clear whether they want a _fraction_, or a _percentage_.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub struct Percentage<T: Copy + Into<f64>> {
/// The underlying percentage value.
value: T,
impl<T: Copy + Into<f64>> Percentage<T> {
/// Create a new `IntPercentage` from the underlying percentage.
pub fn new(value: T) -> Self {
Self { value }
/// Return this value as a (possibly improper) fraction.
/// ```
/// use tor_units::Percentage;
/// let pct_200 = Percentage::<u8>::new(200);
/// let pct_100 = Percentage::<u8>::new(100);
/// let pct_50 = Percentage::<u8>::new(50);
/// assert_eq!(pct_200.as_fraction(), 2.0);
/// assert_eq!(pct_100.as_fraction(), 1.0);
/// assert_eq!(pct_50.as_fraction(), 0.5);
/// // Note: don't actually compare f64 with ==.
pub fn as_fraction(self) -> f64 {
self.value.into() / 100.0
/// Return this value as a percentage.
/// assert_eq!(pct_200.as_percent(), 200);
/// assert_eq!(pct_100.as_percent(), 100);
/// assert_eq!(pct_50.as_percent(), 50);
pub fn as_percent(self) -> T {
impl<const H: i32, const L: i32> TryFrom<i32> for Percentage<BoundedInt32<H, L>> {
fn try_from(v: i32) -> Result<Self, Error> {
Ok(Percentage::new(v.try_into()?))
// TODO: There is a bunch of code duplication among these "IntegerTimeUnits"
// section.
#[derive(
Add, Copy, Clone, Mul, Div, From, FromStr, Display, Debug, PartialEq, Eq, Ord, PartialOrd, Hash,
/// This type represents an integer number of milliseconds.
/// The underlying type should usually implement `TryInto<u64>`.
pub struct IntegerMilliseconds<T> {
/// Interior Value. Should implement `TryInto<u64>` to be useful.
impl<T> IntegerMilliseconds<T> {
/// Public Constructor
IntegerMilliseconds { value }
/// Deconstructor
/// Use only in contexts where it's no longer possible to
/// use the Rust type system to ensure secs vs ms vs us correctness.
pub fn as_millis(self) -> T {
/// Map the inner value (useful for conversion)
/// # Example
/// use tor_units::{BoundedInt32, IntegerMilliseconds};
/// let value: IntegerMilliseconds<i32> = 42.into();
/// let value: IntegerMilliseconds<BoundedInt32<0,1000>>
/// = value.try_map(TryInto::try_into).unwrap();
pub fn try_map<U, F, E>(self, f: F) -> Result<IntegerMilliseconds<U>, E>
where
F: FnOnce(T) -> Result<U, E>,
{
Ok(IntegerMilliseconds::new(f(self.value)?))
impl<T: TryInto<u64>> TryFrom<IntegerMilliseconds<T>> for Duration {
type Error = <T as TryInto<u64>>::Error;
fn try_from(val: IntegerMilliseconds<T>) -> Result<Self, <T as TryInto<u64>>::Error> {
Ok(Self::from_millis(val.value.try_into()?))
impl<const H: i32, const L: i32> TryFrom<i32> for IntegerMilliseconds<BoundedInt32<H, L>> {
Ok(IntegerMilliseconds::new(v.try_into()?))
/// This type represents an integer number of seconds.
pub struct IntegerSeconds<T> {
impl<T> IntegerSeconds<T> {
IntegerSeconds { value }
pub fn as_secs(self) -> T {
/// use tor_units::{BoundedInt32, IntegerSeconds};
/// let value: IntegerSeconds<i32> = 42.into();
/// let value: IntegerSeconds<BoundedInt32<0,1000>>
pub fn try_map<U, F, E>(self, f: F) -> Result<IntegerSeconds<U>, E>
Ok(IntegerSeconds::new(f(self.value)?))
impl<T: TryInto<u64>> TryFrom<IntegerSeconds<T>> for Duration {
fn try_from(val: IntegerSeconds<T>) -> Result<Self, <T as TryInto<u64>>::Error> {
Ok(Self::from_secs(val.value.try_into()?))
impl<const H: i32, const L: i32> TryFrom<i32> for IntegerSeconds<BoundedInt32<H, L>> {
Ok(IntegerSeconds::new(v.try_into()?))
#[derive(Copy, Clone, From, FromStr, Display, Debug, PartialEq, Eq, Ord, PartialOrd, Hash)]
/// This type represents an integer number of minutes.
pub struct IntegerMinutes<T> {
/// Interior Value. Should Implement `TryInto<u64>` to be useful.
impl<T> IntegerMinutes<T> {
IntegerMinutes { value }
pub fn as_minutes(self) -> T {
/// use tor_units::{BoundedInt32, IntegerMinutes};
/// let value: IntegerMinutes<i32> = 42.into();
/// let value: IntegerMinutes<BoundedInt32<0,1000>>
pub fn try_map<U, F, E>(self, f: F) -> Result<IntegerMinutes<U>, E>
Ok(IntegerMinutes::new(f(self.value)?))
impl<T: TryInto<u64>> TryFrom<IntegerMinutes<T>> for Duration {
fn try_from(val: IntegerMinutes<T>) -> Result<Self, Error> {
/// Number of seconds in a single minute.
const SECONDS_PER_MINUTE: u64 = 60;
let minutes: u64 = val.value.try_into().map_err(|_| Error::Overflow)?;
let seconds = minutes
.checked_mul(SECONDS_PER_MINUTE)
.ok_or(Error::Overflow)?;
Ok(Self::from_secs(seconds))
impl<const H: i32, const L: i32> TryFrom<i32> for IntegerMinutes<BoundedInt32<H, L>> {
Ok(IntegerMinutes::new(v.try_into()?))
/// This type represents an integer number of days.
pub struct IntegerDays<T> {
impl<T> IntegerDays<T> {
IntegerDays { value }
pub fn as_days(self) -> T {
/// use tor_units::{BoundedInt32, IntegerDays};
/// let value: IntegerDays<i32> = 42.into();
/// let value: IntegerDays<BoundedInt32<0,1000>>
pub fn try_map<U, F, E>(self, f: F) -> Result<IntegerDays<U>, E>
Ok(IntegerDays::new(f(self.value)?))
impl<T: TryInto<u64>> TryFrom<IntegerDays<T>> for Duration {
fn try_from(val: IntegerDays<T>) -> Result<Self, Error> {
/// Number of seconds in a single day.
const SECONDS_PER_DAY: u64 = 86400;
let days: u64 = val.value.try_into().map_err(|_| Error::Overflow)?;
let seconds = days.checked_mul(SECONDS_PER_DAY).ok_or(Error::Overflow)?;
impl<const H: i32, const L: i32> TryFrom<i32> for IntegerDays<BoundedInt32<H, L>> {
Ok(IntegerDays::new(v.try_into()?))
/// A SendMe Version
/// DOCDOC: Explain why this needs to have its own type, or remove it.
#[derive(Clone, Copy, From, FromStr, Display, Debug, PartialEq, Eq, Ord, PartialOrd, Hash)]
pub struct SendMeVersion(u8);
impl SendMeVersion {
pub fn new(value: u8) -> Self {
SendMeVersion(value)
/// Helper
pub fn get(&self) -> u8 {
self.0
impl TryFrom<i32> for SendMeVersion {
let val_u8 = BoundedInt32::<0, 255>::checked_new(v)?;
Ok(SendMeVersion::new(val_u8.get() as u8))
#[cfg(test)]
mod tests {
#![allow(clippy::unwrap_used)]
use float_cmp::assert_approx_eq;
use super::*;
type TestFoo = BoundedInt32<1, 5>;
type TestBar = BoundedInt32<-45, 17>;
//make_parameter_type! {TestFoo(3,)}
#[test]
fn entire_range_parsed() {
let x: TestFoo = "1".parse().unwrap();
assert!(x.get() == 1);
let x: TestFoo = "2".parse().unwrap();
assert!(x.get() == 2);
let x: TestFoo = "3".parse().unwrap();
assert!(x.get() == 3);
let x: TestFoo = "4".parse().unwrap();
assert!(x.get() == 4);
let x: TestFoo = "5".parse().unwrap();
assert!(x.get() == 5);
fn saturating() {
let x: TestFoo = TestFoo::saturating_new(1000);
let x_val: i32 = x.into();
assert!(x_val == TestFoo::UPPER);
let x: TestFoo = TestFoo::saturating_new(0);
assert!(x_val == TestFoo::LOWER);
fn saturating_string() {
let x: TestFoo = TestFoo::saturating_from_str("1000").unwrap();
let x: TestFoo = TestFoo::saturating_from_str("0").unwrap();
#[should_panic]
fn uninhabited_saturating_new() {
// This value should be uncreatable.
let _: BoundedInt32<10, 5> = BoundedInt32::saturating_new(7);
fn uninhabited_from_string() {
let v: Result<BoundedInt32<10, 5>, Error> = BoundedInt32::saturating_from_str("7");
assert!(matches!(v, Err(Error::Uninhabited)));
fn errors_correct() {
let x: Result<TestBar, Error> = "1000".parse();
assert!(x.unwrap_err() == Error::AboveUpperBound(1000, TestBar::UPPER));
let x: Result<TestBar, Error> = "-1000".parse();
assert!(x.unwrap_err() == Error::BelowLowerBound(-1000, TestBar::LOWER));
let x: Result<TestBar, Error> = "xyz".parse();
assert!(x.unwrap_err() == Error::Unrepresentable);
fn display() {
let v = BoundedInt32::<99, 1000>::checked_new(345).unwrap();
assert_eq!(v.to_string(), "345".to_string());
fn checked_too_high() {
let _: TestBar = "1000".parse().unwrap();
fn checked_too_low() {
let _: TestBar = "-46".parse().unwrap();
fn bounded_to_u64() {
let b: BoundedInt32<-100, 100> = BoundedInt32::checked_new(77).unwrap();
let u: u64 = b.try_into().unwrap();
assert_eq!(u, 77);
let b: BoundedInt32<-100, 100> = BoundedInt32::checked_new(-77).unwrap();
let u: Result<u64, Error> = b.try_into();
assert!(u.is_err());
fn bounded_to_f64() {
let x: BoundedInt32<-100, 100> = BoundedInt32::checked_new(77).unwrap();
let f: f64 = x.into();
assert_approx_eq!(f64, f, 77.0);
fn bounded_from_i32() {
let x: Result<BoundedInt32<-100, 100>, _> = 50.try_into();
let y: i32 = x.unwrap().into();
assert_eq!(y, 50);
let x: Result<BoundedInt32<-100, 100>, _> = 1000.try_into();
assert!(x.is_err());
fn into_bool() {
let zero: BoundedInt32<0, 1> = BoundedInt32::saturating_from(0);
let one: BoundedInt32<0, 1> = BoundedInt32::saturating_from(1);
let f: bool = zero.into();
let t: bool = one.into();
assert!(!f);
assert!(t);
fn into_u8() {
let zero: BoundedInt32<0, 255> = BoundedInt32::saturating_from(0);
let one: BoundedInt32<0, 255> = BoundedInt32::saturating_from(1);
let ninety: BoundedInt32<0, 255> = BoundedInt32::saturating_from(90);
let max: BoundedInt32<0, 255> = BoundedInt32::saturating_from(1000);
let a: u8 = zero.into();
let b: u8 = one.into();
let c: u8 = ninety.into();
let d: u8 = max.into();
assert_eq!(a, 0);
assert_eq!(b, 1);
assert_eq!(c, 90);
assert_eq!(d, 255);
fn into_u32() {
let zero: BoundedInt32<0, 1000> = BoundedInt32::saturating_from(0);
let one: BoundedInt32<0, 1000> = BoundedInt32::saturating_from(1);
let ninety: BoundedInt32<0, 1000> = BoundedInt32::saturating_from(90);
let max: BoundedInt32<0, 1000> = BoundedInt32::saturating_from(1000);
assert_eq!(u32::from(zero), 0);
assert_eq!(u32::from(one), 1);
assert_eq!(u32::from(ninety), 90);
assert_eq!(u32::from(max), 1000);
let zero: BoundedInt32<1, 1000> = BoundedInt32::saturating_from(0);
let one: BoundedInt32<1, 1000> = BoundedInt32::saturating_from(1);
let ninety: BoundedInt32<1, 1000> = BoundedInt32::saturating_from(90);
let max: BoundedInt32<1, 1000> = BoundedInt32::saturating_from(1000);
assert_eq!(u32::from(zero), 1);
fn try_into_usize() {
let b0: BoundedInt32<-10, 300> = BoundedInt32::saturating_from(0);
let b100: BoundedInt32<-10, 300> = BoundedInt32::saturating_from(100);
let bn5: BoundedInt32<-10, 300> = BoundedInt32::saturating_from(-5);
assert_eq!(usize::try_from(b0), Ok(0_usize));
assert_eq!(usize::try_from(b100), Ok(100_usize));
assert_eq!(usize::try_from(bn5), Err(Error::Negative));
fn percents() {
type Pct = Percentage<u8>;
let p = Pct::new(100);
assert_eq!(p.as_percent(), 100);
assert_approx_eq!(f64, p.as_fraction(), 1.0);
let p = Pct::new(0);
assert_eq!(p.as_percent(), 0);
assert_approx_eq!(f64, p.as_fraction(), 0.0);
let p = Pct::new(25);
assert_eq!(p.as_percent(), 25);
assert_eq!(p.clone(), p);
assert_approx_eq!(f64, p.as_fraction(), 0.25);
type BPct = Percentage<BoundedInt32<0, 100>>;
assert_eq!(BPct::try_from(99).unwrap().as_percent().get(), 99);
fn milliseconds() {
type Msec = IntegerMilliseconds<i32>;
let ms = Msec::new(500);
let d: Result<Duration, _> = ms.try_into();
assert_eq!(d.unwrap(), Duration::from_millis(500));
assert_eq!(Duration::try_from(ms * 2).unwrap(), Duration::from_secs(1));
let ms = Msec::new(-100);
assert!(d.is_err());
type BMSec = IntegerMilliseconds<BoundedInt32<0, 1000>>;
let half_sec = BMSec::try_from(500).unwrap();
assert_eq!(
Duration::try_from(half_sec).unwrap(),
Duration::from_millis(500)
);
assert!(BMSec::try_from(1001).is_err());
fn seconds() {
type Sec = IntegerSeconds<i32>;
let ms = Sec::new(500);
assert_eq!(d.unwrap(), Duration::from_secs(500));
let ms = Sec::new(-100);
type BSec = IntegerSeconds<BoundedInt32<0, 3600>>;
let half_hour = BSec::try_from(1800).unwrap();
Duration::try_from(half_hour).unwrap(),
Duration::from_secs(1800)
assert!(BSec::try_from(9999).is_err());
assert_eq!(half_hour.clone(), half_hour);
fn minutes() {
type Min = IntegerMinutes<i32>;
let t = Min::new(500);
let d: Duration = t.try_into().unwrap();
assert_eq!(d, Duration::from_secs(500 * 60));
let t = Min::new(-100);
let d: Result<Duration, _> = t.try_into();
assert_eq!(d, Err(Error::Overflow));
let t = IntegerMinutes::<u64>::new(u64::MAX);
type BMin = IntegerMinutes<BoundedInt32<10, 30>>;
BMin::new(17_i32.try_into().unwrap()),
BMin::try_from(17).unwrap()
fn days() {
type Days = IntegerDays<i32>;
let t = Days::new(500);
assert_eq!(d, Duration::from_secs(500 * 86400));
let t = Days::new(-100);
let t = IntegerDays::<u64>::new(u64::MAX);
type BDays = IntegerDays<BoundedInt32<10, 30>>;
BDays::new(17_i32.try_into().unwrap()),
BDays::try_from(17).unwrap()
fn sendme() {
let smv = SendMeVersion::new(5);
assert_eq!(smv.get(), 5);
assert_eq!(smv.clone().get(), 5);
assert_eq!(smv, SendMeVersion::try_from(5).unwrap());