1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
//! Declare traits to be implemented by types that describe a place
//! that Tor can connect to, directly or indirectly.

use derive_deftly::derive_deftly_adhoc;
use safelog::Redactable;
use std::{fmt, iter::FusedIterator, net::SocketAddr};
use tor_llcrypto::pk;

use crate::{ChannelMethod, RelayIdRef, RelayIdType, RelayIdTypeIter};

#[cfg(feature = "pt-client")]
use crate::PtTargetAddr;

/// Legacy implementation helper for HasRelayIds.
///
/// Previously, we assumed that everything had these two identity types, which
/// is not an assumption we want to keep making in the future.
pub trait HasRelayIdsLegacy {
    /// Return the ed25519 identity for this relay.
    fn ed_identity(&self) -> &pk::ed25519::Ed25519Identity;
    /// Return the RSA identity for this relay.
    fn rsa_identity(&self) -> &pk::rsa::RsaIdentity;
}

/// An object containing information about a relay's identity keys.
///
/// This trait has a fairly large number of methods, most of which you're not
/// actually expected to implement.  The only one that you need to provide is
/// [`identity`](HasRelayIds::identity).
pub trait HasRelayIds {
    /// Return the identity of this relay whose type is `key_type`, or None if
    /// the relay has no such identity.
    ///
    /// (Currently all relays have all recognized identity types, but we might
    /// implement or deprecate an identity type in the future.)
    fn identity(&self, key_type: RelayIdType) -> Option<RelayIdRef<'_>>;

    /// Return an iterator over all of the identities held by this object.
    fn identities(&self) -> RelayIdIter<'_, Self> {
        RelayIdIter {
            info: self,
            next_key: RelayIdType::all_types(),
        }
    }

    /// Return the ed25519 identity for this relay if it has one.
    fn ed_identity(&self) -> Option<&pk::ed25519::Ed25519Identity> {
        self.identity(RelayIdType::Ed25519)
            .map(RelayIdRef::unwrap_ed25519)
    }

    /// Return the RSA identity for this relay if it has one.
    fn rsa_identity(&self) -> Option<&pk::rsa::RsaIdentity> {
        self.identity(RelayIdType::Rsa).map(RelayIdRef::unwrap_rsa)
    }

    /// Check whether the provided Id is a known identity of this relay.
    ///
    /// Remember that a given set of identity keys may be incomplete: some
    /// objects that represent a relay have only a subset of the relay's
    /// identities. Therefore, a "true" answer means that the relay has this
    /// identity,  but a "false" answer could mean that the relay has a
    /// different identity of this type, or that it has _no_ known identity of
    /// this type.
    fn has_identity(&self, id: RelayIdRef<'_>) -> bool {
        self.identity(id.id_type()).map(|my_id| my_id == id) == Some(true)
    }

    /// Return true if this object has any known identity.
    fn has_any_identity(&self) -> bool {
        RelayIdType::all_types().any(|id_type| self.identity(id_type).is_some())
    }

    /// Return true if this object has exactly the same relay IDs as `other`.
    //
    // TODO: Once we make it so particular identity key types are optional, we
    // should add a note saying that this function is usually not what you want
    // for many cases, since you might want to know "could this be the same
    // relay" vs "is this definitely the same relay."
    //
    // NOTE: We don't make this an `Eq` method, since we want to make callers
    // choose carefully among this method, `has_all_relay_ids_from`, and any
    // similar methods we add in the future.
    #[allow(clippy::nonminimal_bool)] // rust-clippy/issues/12627
    fn same_relay_ids<T: HasRelayIds + ?Sized>(&self, other: &T) -> bool {
        // We use derive-deftly to iterate over the id types, rather than strum
        //
        // Empirically, with rustc 1.77.0-beta.5, this arranges that
        //     <tor_netdir::Relay as HasRelayIds>::same_relay_ids
        // compiles to the same asm (on amd64) as the open-coded inherent
        //     tor_netdir::Relay::has_same_relay_ids
        //
        // The problem with the strum approach seems to be that the compiler doesn't inline
        //     <RelayIdTypeIter as Iterator>::next
        // and unroll the loop.
        // Adding `#[inline]` and even `#[inline(always)]` to the strum output didn't help.
        //
        // When `next()` isn't inlined and the loop unrolled,
        // the compiler can't inline the matching on the id type,
        // and generate the obvious simple function.
        //
        // Empirically, the same results with non-inlined next() and non-unrolled loop,
        // were obtained with:
        //   - a simpler hand-coded Iterator struct
        //   - that hand-coded Iterator struct locally present in tor-netdir,
        //   - using `<[RelayIdType; ] as IntoIterator>`
        //
        // I experimented to see if this was a general problem with `strum`'s iterator.
        // In a smaller test program the compiler *does* unroll and inline.
        // I suspect that the compiler is having trouble with the complexities
        // of disentangling `HasLegacyRelayIds` and/or comparing `Option<RelayIdRef>`.
        //
        // TODO: do we want to replace RelayIdType::all_types with derive-deftly
        // in RelayIdIter, has_all_relay_ids_from, has_any_relay_id_from, etc.?
        // If so, search this crate for all_types.
        derive_deftly_adhoc! {
            RelayIdType:
            $(
                self.identity($vtype) == other.identity($vtype) &&
            )
                true
        }
    }

    /// Return true if this object has every relay ID that `other` does.
    ///
    /// (It still returns true if there are some IDs in this object that are not
    /// present in `other`.)
    fn has_all_relay_ids_from<T: HasRelayIds + ?Sized>(&self, other: &T) -> bool {
        RelayIdType::all_types().all(|key_type| {
            match (self.identity(key_type), other.identity(key_type)) {
                // If we both have the same key for this type, great.
                (Some(mine), Some(theirs)) if mine == theirs => true,
                // Uh oh. They do have a key for his type, but it's not ours.
                (_, Some(_theirs)) => false,
                // If they don't care what we have for this type, great.
                (_, None) => true,
            }
        })
    }

    /// Return true if this object has any relay ID that `other` has.
    ///
    /// This is symmetrical:
    /// it returns true if the two objects have any overlap in their identities.
    fn has_any_relay_id_from<T: HasRelayIds + ?Sized>(&self, other: &T) -> bool {
        RelayIdType::all_types()
            .filter_map(|key_type| Some((self.identity(key_type)?, other.identity(key_type)?)))
            .any(|(self_id, other_id)| self_id == other_id)
    }

    /// Compare this object to another HasRelayIds.
    ///
    /// Objects are sorted by Ed25519 identities, with ties decided by RSA
    /// identities. An absent identity of a given type is sorted before a
    /// present identity of that type.
    ///
    /// If additional identities are added in the future, they may taken into
    /// consideration before _or_ after the current identity types.
    fn cmp_by_relay_ids<T: HasRelayIds + ?Sized>(&self, other: &T) -> std::cmp::Ordering {
        for key_type in RelayIdType::all_types() {
            let ordering = Ord::cmp(&self.identity(key_type), &other.identity(key_type));
            if ordering.is_ne() {
                return ordering;
            }
        }
        std::cmp::Ordering::Equal
    }

    /// Return a reference to this object suitable for formatting its
    /// [`HasRelayIds`] members.
    fn display_relay_ids(&self) -> DisplayRelayIds<'_, Self> {
        DisplayRelayIds { inner: self }
    }
}

impl<T: HasRelayIdsLegacy> HasRelayIds for T {
    fn identity(&self, key_type: RelayIdType) -> Option<RelayIdRef<'_>> {
        match key_type {
            RelayIdType::Rsa => Some(self.rsa_identity().into()),
            RelayIdType::Ed25519 => Some(self.ed_identity().into()),
        }
    }
}

/// A helper type used to format the [`RelayId`](crate::RelayId)s in a
/// [`HasRelayIds`].
#[derive(Clone)]
pub struct DisplayRelayIds<'a, T: HasRelayIds + ?Sized> {
    /// The HasRelayIds that we're displaying.
    inner: &'a T,
}
// Redactable must implement Debug.
impl<'a, T: HasRelayIds + ?Sized> fmt::Debug for DisplayRelayIds<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("DisplayRelayIds").finish_non_exhaustive()
    }
}

impl<'a, T: HasRelayIds + ?Sized> DisplayRelayIds<'a, T> {
    /// Helper: output `self` in a possibly redacted way.
    fn fmt_impl(&self, f: &mut fmt::Formatter<'_>, redact: bool) -> fmt::Result {
        let mut iter = self.inner.identities();
        if let Some(ident) = iter.next() {
            write!(f, "{}", ident.maybe_redacted(redact))?;
        }
        if redact {
            return Ok(());
        }
        for ident in iter {
            write!(f, " {}", ident.maybe_redacted(redact))?;
        }
        Ok(())
    }
}
impl<'a, T: HasRelayIds + ?Sized> fmt::Display for DisplayRelayIds<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.fmt_impl(f, false)
    }
}
impl<'a, T: HasRelayIds + ?Sized> Redactable for DisplayRelayIds<'a, T> {
    fn display_redacted(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.fmt_impl(f, true)
    }
}

/// An iterator over all of the relay identities held by a [`HasRelayIds`]
#[derive(Clone)]
pub struct RelayIdIter<'a, T: HasRelayIds + ?Sized> {
    /// The object holding the keys
    info: &'a T,
    /// The next key type to yield
    next_key: RelayIdTypeIter,
}

impl<'a, T: HasRelayIds + ?Sized> Iterator for RelayIdIter<'a, T> {
    type Item = RelayIdRef<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        for key_type in &mut self.next_key {
            if let Some(key) = self.info.identity(key_type) {
                return Some(key);
            }
        }
        None
    }
}
// RelayIdIter is fused since next_key is fused.
impl<'a, T: HasRelayIds + ?Sized> FusedIterator for RelayIdIter<'a, T> {}

/// An object that represents a host on the network which may have known IP addresses.
pub trait HasAddrs {
    /// Return the addresses listed for this server.
    ///
    /// NOTE that these addresses are not necessarily ones that we should
    /// connect to directly!  They can be useful for telling where a server is
    /// located, or whether it is "close" to another server, but without knowing
    /// the associated protocols you cannot use these to launch a connection.
    ///
    /// Also, for some servers, we may not actually have any relevant addresses;
    /// in that case, the returned slice is empty.
    ///
    /// To see how to _connect_ to a relay, use [`HasChanMethod::chan_method`]
    //
    // TODO: This is a questionable API. I'd rather return an iterator
    // of addresses or references to addresses, but both of those options
    // make defining the right associated types rather tricky.
    fn addrs(&self) -> &[SocketAddr];
}

/// An object that can be connected to via [`ChannelMethod`]s.
pub trait HasChanMethod {
    /// Return the known ways to contact this
    // TODO: See notes on HasAddrs above.
    // TODO: I don't like having this return a new ChannelMethod, but I
    // don't see a great alternative. Let's revisit that.-nickm.
    fn chan_method(&self) -> ChannelMethod;
}

/// Implement `HasChanMethods` for an object with `HasAddr` whose addresses
/// _all_ represent a host we can connect to by a direct Tor connection at its
/// IP addresses.
pub trait DirectChanMethodsHelper: HasAddrs {}

impl<D: DirectChanMethodsHelper> HasChanMethod for D {
    fn chan_method(&self) -> ChannelMethod {
        ChannelMethod::Direct(self.addrs().to_vec())
    }
}

/// Information about a Tor relay used to connect to it.
///
/// Anything that implements 'ChanTarget' can be used as the
/// identity of a relay for the purposes of launching a new
/// channel.
pub trait ChanTarget: HasRelayIds + HasAddrs + HasChanMethod {
    /// Return a reference to this object suitable for formatting its
    /// [`ChanTarget`]-specific members.
    ///
    /// The display format is not exhaustive, but tries to give enough
    /// information to identify which channel target we're talking about.
    fn display_chan_target(&self) -> DisplayChanTarget<'_, Self>
    where
        Self: Sized,
    {
        DisplayChanTarget { inner: self }
    }
}

/// Information about a Tor relay used to extend a circuit to it.
///
/// Anything that implements 'CircTarget' can be used as the
/// identity of a relay for the purposes of extending a circuit.
pub trait CircTarget: ChanTarget {
    /// Return a new vector of encoded link specifiers for this relay.
    ///
    /// Note that, outside of this method, nothing in Arti should be re-ordering
    /// the link specifiers returned by this method.  It is this method's
    /// responsibility to return them in the correct order.
    ///
    /// The default implementation for this method builds a list of link
    /// specifiers from this object's identities and IP addresses, and sorts
    /// them into the order specified in tor-spec to avoid implementation
    /// fingerprinting attacks.
    //
    // TODO: This is a questionable API. I'd rather return an iterator
    // of link specifiers, but that's not so easy to do, since it seems
    // doing so correctly would require default associated types.
    fn linkspecs(&self) -> tor_bytes::EncodeResult<Vec<crate::EncodedLinkSpec>> {
        let mut result: Vec<_> = self.identities().map(|id| id.to_owned().into()).collect();
        #[allow(irrefutable_let_patterns)]
        if let ChannelMethod::Direct(addrs) = self.chan_method() {
            result.extend(addrs.into_iter().map(crate::LinkSpec::from));
        }
        crate::LinkSpec::sort_by_type(&mut result[..]);
        result.into_iter().map(|ls| ls.encode()).collect()
    }
    /// Return the ntor onion key for this relay
    fn ntor_onion_key(&self) -> &pk::curve25519::PublicKey;
    /// Return the subprotocols implemented by this relay.
    fn protovers(&self) -> &tor_protover::Protocols;
}

/// A reference to a ChanTarget that implements Display using a hopefully useful
/// format.
#[derive(Debug, Clone)]
pub struct DisplayChanTarget<'a, T> {
    /// The ChanTarget that we're formatting.
    inner: &'a T,
}

impl<'a, T: ChanTarget> DisplayChanTarget<'a, T> {
    /// helper: output `self` in a possibly redacted way.
    fn fmt_impl(&self, f: &mut fmt::Formatter<'_>, redact: bool) -> fmt::Result {
        write!(f, "[")?;
        // We look at the chan_method() (where we would connect to) rather than
        // the addrs() (where the relay is, nebulously, "located").  This lets us
        // give a less surprising description.
        match self.inner.chan_method() {
            ChannelMethod::Direct(v) if v.is_empty() => write!(f, "?")?,
            ChannelMethod::Direct(v) if v.len() == 1 => {
                write!(f, "{}", v[0].maybe_redacted(redact))?;
            }
            ChannelMethod::Direct(v) => write!(f, "{}+", v[0].maybe_redacted(redact))?,
            #[cfg(feature = "pt-client")]
            ChannelMethod::Pluggable(target) => {
                match target.addr() {
                    PtTargetAddr::None => {}
                    other => write!(f, "{} ", other.maybe_redacted(redact))?,
                }
                write!(f, "via {}", target.transport())?;
                // This deliberately doesn't include the PtTargetSettings, since
                // they can be large, and they're typically unnecessary.
            }
        }

        write!(f, " ")?;
        self.inner.display_relay_ids().fmt_impl(f, redact)?;

        write!(f, "]")
    }
}

impl<'a, T: ChanTarget> fmt::Display for DisplayChanTarget<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.fmt_impl(f, false)
    }
}

impl<'a, T: ChanTarget + fmt::Debug> safelog::Redactable for DisplayChanTarget<'a, T> {
    fn display_redacted(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.fmt_impl(f, true)
    }
    fn debug_redacted(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "ChanTarget({:?})", self.redacted().to_string())
    }
}

#[cfg(test)]
mod test {
    // @@ begin test lint list maintained by maint/add_warning @@
    #![allow(clippy::bool_assert_comparison)]
    #![allow(clippy::clone_on_copy)]
    #![allow(clippy::dbg_macro)]
    #![allow(clippy::mixed_attributes_style)]
    #![allow(clippy::print_stderr)]
    #![allow(clippy::print_stdout)]
    #![allow(clippy::single_char_pattern)]
    #![allow(clippy::unwrap_used)]
    #![allow(clippy::unchecked_duration_subtraction)]
    #![allow(clippy::useless_vec)]
    #![allow(clippy::needless_pass_by_value)]
    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
    use super::*;
    use crate::RelayIds;
    use hex_literal::hex;
    use std::net::IpAddr;
    use tor_llcrypto::pk::{self, ed25519::Ed25519Identity, rsa::RsaIdentity};

    struct Example {
        addrs: Vec<SocketAddr>,
        ed_id: pk::ed25519::Ed25519Identity,
        rsa_id: pk::rsa::RsaIdentity,
        ntor: pk::curve25519::PublicKey,
        pv: tor_protover::Protocols,
    }
    impl HasAddrs for Example {
        fn addrs(&self) -> &[SocketAddr] {
            &self.addrs[..]
        }
    }
    impl DirectChanMethodsHelper for Example {}
    impl HasRelayIdsLegacy for Example {
        fn ed_identity(&self) -> &pk::ed25519::Ed25519Identity {
            &self.ed_id
        }
        fn rsa_identity(&self) -> &pk::rsa::RsaIdentity {
            &self.rsa_id
        }
    }
    impl ChanTarget for Example {}
    impl CircTarget for Example {
        fn ntor_onion_key(&self) -> &pk::curve25519::PublicKey {
            &self.ntor
        }
        fn protovers(&self) -> &tor_protover::Protocols {
            &self.pv
        }
    }

    /// Return an `Example` object, for use in tests below.
    fn example() -> Example {
        Example {
            addrs: vec![
                "127.0.0.1:99".parse::<SocketAddr>().unwrap(),
                "[::1]:909".parse::<SocketAddr>().unwrap(),
            ],
            ed_id: pk::ed25519::PublicKey::from_bytes(&hex!(
                "fc51cd8e6218a1a38da47ed00230f058
                 0816ed13ba3303ac5deb911548908025"
            ))
            .unwrap()
            .into(),
            rsa_id: pk::rsa::RsaIdentity::from_bytes(&hex!(
                "1234567890abcdef12341234567890abcdef1234"
            ))
            .unwrap(),
            ntor: pk::curve25519::PublicKey::from(hex!(
                "e6db6867583030db3594c1a424b15f7c
                 726624ec26b3353b10a903a6d0ab1c4c"
            )),
            pv: tor_protover::Protocols::default(),
        }
    }

    #[test]
    fn test_linkspecs() {
        let ex = example();
        let specs = ex
            .linkspecs()
            .unwrap()
            .into_iter()
            .map(|ls| ls.parse())
            .collect::<Result<Vec<_>, _>>()
            .unwrap();
        assert_eq!(4, specs.len());

        use crate::ls::LinkSpec;
        assert_eq!(
            specs[0],
            LinkSpec::OrPort("127.0.0.1".parse::<IpAddr>().unwrap(), 99)
        );
        assert_eq!(
            specs[1],
            LinkSpec::RsaId(
                pk::rsa::RsaIdentity::from_bytes(&hex!("1234567890abcdef12341234567890abcdef1234"))
                    .unwrap()
            )
        );
        assert_eq!(
            specs[2],
            LinkSpec::Ed25519Id(
                pk::ed25519::PublicKey::from_bytes(&hex!(
                    "fc51cd8e6218a1a38da47ed00230f058
                     0816ed13ba3303ac5deb911548908025"
                ))
                .unwrap()
                .into()
            )
        );
        assert_eq!(
            specs[3],
            LinkSpec::OrPort("::1".parse::<IpAddr>().unwrap(), 909)
        );
    }

    #[test]
    fn cmp_by_ids() {
        use crate::RelayIds;
        use std::cmp::Ordering;
        fn b(ed: Option<Ed25519Identity>, rsa: Option<RsaIdentity>) -> RelayIds {
            let mut b = RelayIds::builder();
            if let Some(ed) = ed {
                b.ed_identity(ed);
            }
            if let Some(rsa) = rsa {
                b.rsa_identity(rsa);
            }
            b.build().unwrap()
        }
        // Assert that v is strictly ascending.
        fn assert_sorted(v: &[RelayIds]) {
            for slice in v.windows(2) {
                assert_eq!(slice[0].cmp_by_relay_ids(&slice[1]), Ordering::Less);
                assert_eq!(slice[1].cmp_by_relay_ids(&slice[0]), Ordering::Greater);
                assert_eq!(slice[0].cmp_by_relay_ids(&slice[0]), Ordering::Equal);
            }
        }

        let ed1 = hex!("0a54686973206973207468652043656e7472616c205363727574696e697a6572").into();
        let ed2 = hex!("6962696c69747920746f20656e666f72636520616c6c20746865206c6177730a").into();
        let ed3 = hex!("73736564207965740a497420697320616c736f206d7920726573706f6e736962").into();
        let rsa1 = hex!("2e2e2e0a4974206973206d7920726573706f6e73").into();
        let rsa2 = hex!("5468617420686176656e2774206265656e207061").into();
        let rsa3 = hex!("696c69747920746f20616c65727420656163680a").into();

        assert_sorted(&[
            b(Some(ed1), None),
            b(Some(ed2), None),
            b(Some(ed3), None),
            b(Some(ed3), Some(rsa1)),
        ]);
        assert_sorted(&[
            b(Some(ed1), Some(rsa3)),
            b(Some(ed2), Some(rsa2)),
            b(Some(ed3), Some(rsa1)),
            b(Some(ed3), Some(rsa2)),
        ]);
        assert_sorted(&[
            b(Some(ed1), Some(rsa1)),
            b(Some(ed1), Some(rsa2)),
            b(Some(ed1), Some(rsa3)),
        ]);
        assert_sorted(&[
            b(None, Some(rsa1)),
            b(None, Some(rsa2)),
            b(None, Some(rsa3)),
        ]);
        assert_sorted(&[
            b(None, Some(rsa1)),
            b(Some(ed1), None),
            b(Some(ed1), Some(rsa1)),
        ]);
    }

    #[test]
    fn compare_id_sets() {
        // TODO somehow nicely unify these repeated predefined examples
        let ed1 = hex!("0a54686973206973207468652043656e7472616c205363727574696e697a6572").into();
        let rsa1 = hex!("2e2e2e0a4974206973206d7920726573706f6e73").into();
        let rsa2 = RsaIdentity::from(hex!("5468617420686176656e2774206265656e207061"));

        let both1 = RelayIds::builder()
            .ed_identity(ed1)
            .rsa_identity(rsa1)
            .build()
            .unwrap();
        let mixed = RelayIds::builder()
            .ed_identity(ed1)
            .rsa_identity(rsa2)
            .build()
            .unwrap();
        let ed1 = RelayIds::builder().ed_identity(ed1).build().unwrap();
        let rsa1 = RelayIds::builder().rsa_identity(rsa1).build().unwrap();
        let rsa2 = RelayIds::builder().rsa_identity(rsa2).build().unwrap();

        fn chk_equal(v: &impl HasRelayIds) {
            assert!(v.same_relay_ids(v));
            assert!(v.has_all_relay_ids_from(v));
            assert!(v.has_any_relay_id_from(v));
        }
        fn chk_strict_subset(bigger: &impl HasRelayIds, smaller: &impl HasRelayIds) {
            assert!(!bigger.same_relay_ids(smaller));
            assert!(bigger.has_all_relay_ids_from(smaller));
            assert!(bigger.has_any_relay_id_from(smaller));
            assert!(!smaller.same_relay_ids(bigger));
            assert!(!smaller.has_all_relay_ids_from(bigger));
            assert!(smaller.has_any_relay_id_from(bigger));
        }
        fn chk_nontrivially_overlapping_one_way(a: &impl HasRelayIds, b: &impl HasRelayIds) {
            assert!(!a.same_relay_ids(b));
            assert!(!a.has_all_relay_ids_from(b));
            assert!(a.has_any_relay_id_from(b));
        }
        fn chk_nontrivially_overlapping(a: &impl HasRelayIds, b: &impl HasRelayIds) {
            chk_nontrivially_overlapping_one_way(a, b);
            chk_nontrivially_overlapping_one_way(b, a);
        }

        chk_equal(&ed1);
        chk_equal(&rsa1);
        chk_equal(&both1);

        chk_strict_subset(&both1, &ed1);
        chk_strict_subset(&both1, &rsa1);
        chk_strict_subset(&mixed, &ed1);
        chk_strict_subset(&mixed, &rsa2);

        chk_nontrivially_overlapping(&both1, &mixed);
    }

    #[test]
    fn display() {
        let e1 = example();
        assert_eq!(
            e1.display_chan_target().to_string(),
            "[127.0.0.1:99+ ed25519:/FHNjmIYoaONpH7QAjDwWAgW7RO6MwOsXeuRFUiQgCU \
              $1234567890abcdef12341234567890abcdef1234]"
        );

        #[cfg(feature = "pt-client")]
        {
            use crate::PtTarget;

            let rsa = hex!("234461644a6f6b6523436f726e794f6e4d61696e").into();
            let mut b = crate::OwnedChanTarget::builder();
            b.ids().rsa_identity(rsa);
            let e2 = b
                .method(ChannelMethod::Pluggable(PtTarget::new(
                    "obfs4".parse().unwrap(),
                    "127.0.0.1:99".parse().unwrap(),
                )))
                .build()
                .unwrap();
            assert_eq!(
                e2.to_string(),
                "[127.0.0.1:99 via obfs4 $234461644a6f6b6523436f726e794f6e4d61696e]"
            );
        }
    }

    #[test]
    fn has_id() {
        use crate::RelayIds;
        assert!(example().has_any_identity());
        assert!(!RelayIds::empty().has_any_identity());
    }
}