Lines
89.23 %
Functions
40.91 %
Branches
100 %
//! Manager-global identifiers, for things that need to be identified outside
//! the scope of a single RPC connection.
//!
//! We expect to use this code to identify `TorClient`s and similar objects that
//! can be passed as the target of a SOCKS request. Since the SOCKS request is
//! not part of the RPC session, we need a way for it to refer to these objects.
use tor_bytes::Reader;
use tor_llcrypto::util::ct::CtByteArray;
use tor_rpcbase::{LookupError, ObjectId};
use zeroize::Zeroizing;
use crate::{connection::ConnectionId, objmap::GenIdx};
/// A [RpcMgr](crate::RpcMgr)-scoped identifier for an RPC object.
///
/// A `GlobalId` identifies an RPC object uniquely among all the objects visible
/// to any active session on an RpcMgr.
/// Its encoding is unforgeable.
#[derive(Clone, Debug, Eq, PartialEq)]
pub(crate) struct GlobalId {
/// The RPC connection within whose object map `local_id` is visible.
pub(crate) connection: ConnectionId,
/// The identifier of the object within `connection`'s object map.
pub(crate) local_id: GenIdx,
}
/// The number of bytes in our [`MacKey`].
/// (Our choice of algorithm allows any key length we want; 128 bits should be
/// secure enough.)
const MAC_KEY_LEN: usize = 16;
/// The number of bytes in a [`Mac`].
/// (Our choice of algorithm allows any MAC length we want; 128 bits should be
/// enough to make the results unforgeable.)
const MAC_LEN: usize = 16;
/// An key that we use to compute message authentication codes (MACs) for our
/// [`GlobalId`]s
/// We do not guarantee any particular MAC algorithm; we should be able to
/// change MAC algorithms without breaking any user code. Right now, we choose a
/// Kangaroo12-based construction in order to be reasonably fast.
#[derive(Clone)]
pub(crate) struct MacKey {
/// The key itself.
key: Zeroizing<[u8; MAC_KEY_LEN]>,
/// A message authentication code produced by [`MacKey::mac`].
type Mac = CtByteArray<MAC_LEN>;
impl MacKey {
/// Construct a new random `MacKey`.
pub(crate) fn new<Rng: rand::Rng + rand::CryptoRng>(rng: &mut Rng) -> Self {
Self {
key: Zeroizing::new(rng.gen()),
/// Compute the AMC of a given input `inp`, and store the result into `out`.
/// The current construction allows `out` to be any length.
fn mac(&self, inp: &[u8], out: &mut [u8]) {
use tiny_keccak::{Hasher as _, Kmac};
let mut mac = Kmac::v128(&self.key[..], b"artirpc globalid");
mac.update(inp);
mac.finalize(out);
impl GlobalId {
/// The number of bytes used to encode a `GlobalId` in binary form.
const ENCODED_LEN: usize = MAC_LEN + ConnectionId::LEN + GenIdx::BYTE_LEN;
/// The number of bytes used to encode a `GlobalId` in base-64 form.
// TODO: use div_ceil once it's stable.
pub(crate) const B64_ENCODED_LEN: usize = (Self::ENCODED_LEN * 8 + 5) / 6;
/// Create a new GlobalId from its parts.
pub(crate) fn new(connection: ConnectionId, local_id: GenIdx) -> GlobalId {
GlobalId {
connection,
local_id,
/// Encode this ID in an unforgeable string that we can later use to
/// uniquely identify an RPC object.
/// As with local IDs, this encoding is nondeterministic.
pub(crate) fn encode(&self, key: &MacKey) -> ObjectId {
use base64ct::{Base64Unpadded as B64, Encoding};
let bytes = self.encode_as_bytes(key, &mut rand::thread_rng());
B64::encode_string(&bytes[..]).into()
/// As `encode`, but do not base64-encode the result.
fn encode_as_bytes<R: rand::RngCore>(&self, key: &MacKey, rng: &mut R) -> Vec<u8> {
let mut bytes = Vec::with_capacity(Self::ENCODED_LEN);
bytes.resize(MAC_LEN, 0);
bytes.extend_from_slice(self.connection.as_ref());
bytes.extend_from_slice(&self.local_id.to_bytes(rng));
{
// TODO RPC: Maybe we should stick the MAC at the end to make everything simpler.
let (mac, text) = bytes.split_at_mut(MAC_LEN);
key.mac(text, mac);
bytes
/// Try to decode and validate `s` as a [`GlobalId`].
pub(crate) fn try_decode(key: &MacKey, s: &ObjectId) -> Result<Self, LookupError> {
let mut bytes = [0_u8; Self::ENCODED_LEN];
let byte_slice = B64::decode(s.as_ref(), &mut bytes[..])
.map_err(|_| LookupError::NoObject(s.clone()))?;
Self::try_decode_from_bytes(key, byte_slice).ok_or_else(|| LookupError::NoObject(s.clone()))
/// As `try_decode`, but expect a byte slice rather than a base64-encoded string.
fn try_decode_from_bytes(key: &MacKey, bytes: &[u8]) -> Option<Self> {
if bytes.len() != Self::ENCODED_LEN {
return None;
// TODO RPC: Just use Reader here?
let mut found_mac = [0; MAC_LEN];
key.mac(&bytes[MAC_LEN..], &mut found_mac[..]);
let found_mac = Mac::from(found_mac);
let mut r: Reader = Reader::from_slice(bytes);
let declared_mac: Mac = r.extract().ok()?;
if found_mac != declared_mac {
let connection = r.extract::<[u8; ConnectionId::LEN]>().ok()?.into();
let rest = r.into_rest();
let local_id = GenIdx::from_bytes(rest)?;
Some(Self {
})
#[cfg(test)]
mod test {
// @@ begin test lint list maintained by maint/add_warning @@
#![allow(clippy::bool_assert_comparison)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::dbg_macro)]
#![allow(clippy::mixed_attributes_style)]
#![allow(clippy::print_stderr)]
#![allow(clippy::print_stdout)]
#![allow(clippy::single_char_pattern)]
#![allow(clippy::unwrap_used)]
#![allow(clippy::unchecked_duration_subtraction)]
#![allow(clippy::useless_vec)]
#![allow(clippy::needless_pass_by_value)]
//! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
use super::*;
#[test]
fn roundtrip() {
use crate::objmap::{StrongIdx, WeakIdx};
use slotmap_careful::KeyData;
let mut rng = tor_basic_utils::test_rng::testing_rng();
let conn1 = ConnectionId::from(*b"example1-------!");
let conn2 = ConnectionId::from(*b"example2!!!!!!!!");
let genidx_s1 = GenIdx::Strong(StrongIdx::from(KeyData::from_ffi(0x43_0000_0043)));
let genidx_w2 = GenIdx::Weak(WeakIdx::from(KeyData::from_ffi(0x171_0000_0171)));
let gid1 = GlobalId {
connection: conn1,
local_id: genidx_s1,
};
let gid2 = GlobalId {
connection: conn2,
local_id: genidx_w2,
let mac_key = MacKey::new(&mut rng);
let enc1 = gid1.encode(&mac_key);
let gid1_decoded = GlobalId::try_decode(&mac_key, &enc1).unwrap();
assert_eq!(gid1, gid1_decoded);
let enc2 = gid2.encode(&mac_key);
let gid2_decoded = GlobalId::try_decode(&mac_key, &enc2).unwrap();
assert_eq!(gid2, gid2_decoded);
assert_ne!(gid1_decoded, gid2_decoded);
assert_eq!(enc1.as_ref().len(), GlobalId::B64_ENCODED_LEN);
assert_eq!(enc2.as_ref().len(), GlobalId::B64_ENCODED_LEN);
fn mac_works() {
let genidx_w1 = GenIdx::Weak(WeakIdx::from(KeyData::from_ffi(0x171_0000_0171)));
local_id: genidx_w1,
let enc1 = gid1.encode_as_bytes(&mac_key, &mut rng);
let enc2 = gid2.encode_as_bytes(&mac_key, &mut rng);
// Make a 'combined' encoded gid with the mac from one and the info from
// the other.
let mut combined = Vec::from(&enc1[0..MAC_LEN]);
combined.extend_from_slice(&enc2[MAC_LEN..]);
let outcome = GlobalId::try_decode_from_bytes(&mac_key, &combined[..]);
// Can't decode, because MAC was wrong.
assert!(outcome.is_none());