pub trait Binary {
// Required method
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}
Expand description
b
formatting.
The Binary
trait should format its output as a number in binary.
For primitive signed integers (i8
to i128
, and isize
),
negative values are formatted as the two’s complement representation.
The alternate flag, #
, adds a 0b
in front of the output.
For more information on formatters, see the module-level documentation.
§Examples
Basic usage with i32
:
let x = 42; // 42 is '101010' in binary
assert_eq!(format!("{x:b}"), "101010");
assert_eq!(format!("{x:#b}"), "0b101010");
assert_eq!(format!("{:b}", -16), "11111111111111111111111111110000");
Implementing Binary
on a type:
use std::fmt;
struct Length(i32);
impl fmt::Binary for Length {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let val = self.0;
fmt::Binary::fmt(&val, f) // delegate to i32's implementation
}
}
let l = Length(107);
assert_eq!(format!("l as binary is: {l:b}"), "l as binary is: 1101011");
assert_eq!(
// Note that the `0b` prefix added by `#` is included in the total width, so we
// need to add two to correctly display all 32 bits.
format!("l as binary is: {l:#034b}"),
"l as binary is: 0b00000000000000000000000001101011"
);
Required Methods§
1.0.0 · Sourcefn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>
Formats the value using the given formatter.
§Errors
This function should return Err
if, and only if, the provided Formatter
returns Err
.
String formatting is considered an infallible operation; this function only
returns a Result
because writing to the underlying stream might fail and it must
provide a way to propagate the fact that an error has occurred back up the stack.
Implementors§
impl Binary for i8
impl Binary for i16
impl Binary for i32
impl Binary for i64
impl Binary for i128
impl Binary for isize
impl Binary for u8
impl Binary for u16
impl Binary for u32
impl Binary for u64
impl Binary for u128
impl Binary for usize
impl Binary for RelayFlags
impl Binary for BigInt
impl Binary for BigUint
impl Binary for CipherCtxFlags
impl Binary for CMSOptions
impl Binary for OcspFlag
impl Binary for Pkcs7Flags
impl Binary for ExtensionContext
impl Binary for ShutdownState
impl Binary for SslMode
impl Binary for SslOptions
impl Binary for SslSessionCacheMode
impl Binary for SslVerifyMode
impl Binary for X509CheckFlags
impl Binary for X509VerifyFlags
impl Binary for Access
impl Binary for AtFlags
impl Binary for BeginFlags
impl Binary for CreateFlags
impl Binary for CreateFlags
impl Binary for DupFlags
impl Binary for EventFlags
impl Binary for EventMask
impl Binary for EventfdFlags
impl Binary for FallocateFlags
impl Binary for FdFlags
impl Binary for FloatingPointEmulationControl
impl Binary for FloatingPointExceptionMode
impl Binary for IFlags
impl Binary for MembarrierQuery
impl Binary for MemfdFlags
impl Binary for Mode
impl Binary for MountFlags
impl Binary for MountPropagationFlags
impl Binary for OFlags
impl Binary for PidfdFlags
impl Binary for PidfdGetfdFlags
impl Binary for PipeFlags
impl Binary for PollFlags
impl Binary for ReadFlags
impl Binary for ReadWriteFlags
impl Binary for RecvFlags
impl Binary for RenameFlags
impl Binary for ResolveFlags
impl Binary for SealFlags
impl Binary for SendFlags
impl Binary for SockaddrXdpFlags
impl Binary for SocketFlags
impl Binary for SpeculationFeatureControl
impl Binary for SpeculationFeatureState
impl Binary for SpliceFlags
impl Binary for StatVfsMountFlags
impl Binary for StatxFlags
impl Binary for TimerfdFlags
impl Binary for TimerfdTimerFlags
impl Binary for UnalignedAccessControl
impl Binary for UnmountFlags
impl Binary for WaitOptions
impl Binary for WaitidOptions
impl Binary for WatchFlags
impl Binary for WatchMask
impl Binary for XattrFlags
impl Binary for XdpDescOptions
impl Binary for XdpOptionsFlags
impl Binary for XdpRingFlags
impl Binary for XdpUmemRegFlags
impl Binary for u1
impl Binary for u2
impl Binary for u3
impl Binary for u4
impl Binary for u5
impl Binary for u6
impl Binary for u7
impl Binary for u24
impl Binary for u40
impl Binary for u48
impl Binary for u56
impl<'a, I> Binary for Format<'a, I>
impl<'a, T, O> Binary for Domain<'a, Const, T, O>where
O: BitOrder,
T: BitStore,
impl<A, O> Binary for BitArray<A, O>where
O: BitOrder,
A: BitViewSized,
impl<O> Binary for I16<O>where
O: ByteOrder,
impl<O> Binary for I32<O>where
O: ByteOrder,
impl<O> Binary for I64<O>where
O: ByteOrder,
impl<O> Binary for I128<O>where
O: ByteOrder,
impl<O> Binary for Isize<O>where
O: ByteOrder,
impl<O> Binary for U16<O>where
O: ByteOrder,
impl<O> Binary for U32<O>where
O: ByteOrder,
impl<O> Binary for U64<O>where
O: ByteOrder,
impl<O> Binary for U128<O>where
O: ByteOrder,
impl<O> Binary for Usize<O>where
O: ByteOrder,
impl<R> Binary for BitEnd<R>where
R: BitRegister,
impl<R> Binary for BitIdx<R>where
R: BitRegister,
impl<R> Binary for BitMask<R>where
R: BitRegister,
impl<R> Binary for BitPos<R>where
R: BitRegister,
impl<R> Binary for BitSel<R>where
R: BitRegister,
impl<T> Binary for &T
impl<T> Binary for &mut T
impl<T> Binary for NonZero<T>where
T: ZeroablePrimitive + Binary,
impl<T> Binary for Saturating<T>where
T: Binary,
impl<T> Binary for Wrapping<T>where
T: Binary,
impl<T> Binary for BoxSensitive<T>where
T: Binary,
impl<T> Binary for FmtBinary<T>where
T: Binary,
impl<T> Binary for FmtDisplay<T>
impl<T> Binary for FmtList<T>
impl<T> Binary for FmtLowerExp<T>
impl<T> Binary for FmtLowerHex<T>
impl<T> Binary for FmtOctal<T>
impl<T> Binary for FmtPointer<T>
impl<T> Binary for FmtUpperExp<T>
impl<T> Binary for FmtUpperHex<T>
impl<T> Binary for Sensitive<T>where
T: Binary,
impl<T, O> Binary for BitBox<T, O>where
O: BitOrder,
T: BitStore,
impl<T, O> Binary for BitSlice<T, O>where
T: BitStore,
O: BitOrder,
§Bit-Slice Rendering
This implementation prints the contents of a &BitSlice
in one of binary,
octal, or hexadecimal. It is important to note that this does not render the
raw underlying memory! They render the semantically-ordered contents of the
bit-slice as numerals. This distinction matters if you use type parameters that
differ from those presumed by your debugger (which is usually <u8, Msb0>
).
The output separates the T
elements as individual list items, and renders each
element as a base- 2, 8, or 16 numeric string. When walking an element, the bits
traversed by the bit-slice are considered to be stored in
most-significant-bit-first ordering. This means that index [0]
is the high bit
of the left-most digit, and index [n]
is the low bit of the right-most digit,
in a given printed word.
In order to render according to expectations of the Arabic numeral system, an
element being transcribed is chunked into digits from the least-significant end
of its rendered form. This is most noticeable in octal, which will always have a
smaller ceiling on the left-most digit in a printed word, while the right-most
digit in that word is able to use the full 0 ..= 7
numeral range.
§Examples
use bitvec::prelude::*;
let data = [
0b000000_10u8,
// digits print LTR
0b10_001_101,
// significance is computed RTL
0b01_000000,
];
let bits = &data.view_bits::<Msb0>()[6 .. 18];
assert_eq!(format!("{:b}", bits), "[10, 10001101, 01]");
assert_eq!(format!("{:o}", bits), "[2, 215, 1]");
assert_eq!(format!("{:X}", bits), "[2, 8D, 1]");
The {:#}
format modifier causes the standard 0b
, 0o
, or 0x
prefix to be
applied to each printed word. The other format specifiers are not interpreted by
this implementation, and apply to the entire rendered text, not to individual
words.