Tor 0.4.9.0-alpha-dev
memarea.c
Go to the documentation of this file.
1/* Copyright (c) 2008-2021, The Tor Project, Inc. */
2/* See LICENSE for licensing information */
3
4/**
5 * \file memarea.c
6 *
7 * \brief Implementation for memarea_t, an allocator for allocating lots of
8 * small objects that will be freed all at once.
9 */
10
11#include "orconfig.h"
12#include "lib/memarea/memarea.h"
13
14#include <stdlib.h>
15#include <string.h>
16
17#include "lib/arch/bytes.h"
18#include "lib/cc/torint.h"
21#include "lib/log/log.h"
22#include "lib/log/util_bug.h"
23#include "lib/malloc/malloc.h"
24
25#ifndef DISABLE_MEMORY_SENTINELS
26
27/** If true, we try to detect any attempts to write beyond the length of a
28 * memarea. */
29#define USE_SENTINELS
30
31/** All returned pointers should be aligned to the nearest multiple of this
32 * value. */
33#define MEMAREA_ALIGN SIZEOF_VOID_P
34
35/** A value which, when masked out of a pointer, produces a maximally aligned
36 * pointer. */
37#if MEMAREA_ALIGN == 4
38#define MEMAREA_ALIGN_MASK ((uintptr_t)3)
39#elif MEMAREA_ALIGN == 8
40#define MEMAREA_ALIGN_MASK ((uintptr_t)7)
41#else
42#error "void* is neither 4 nor 8 bytes long."
43#endif /* MEMAREA_ALIGN == 4 || ... */
44
45#if defined(__GNUC__) && defined(FLEXIBLE_ARRAY_MEMBER)
46#define USE_ALIGNED_ATTRIBUTE
47/** Name for the 'memory' member of a memory chunk. */
48#define U_MEM mem
49#else
50#define U_MEM u.mem
51#endif /* defined(__GNUC__) && defined(FLEXIBLE_ARRAY_MEMBER) */
52
53#ifdef USE_SENTINELS
54/** Magic value that we stick at the end of a memarea so we can make sure
55 * there are no run-off-the-end bugs. */
56#define SENTINEL_VAL 0x90806622u
57/** How many bytes per area do we devote to the sentinel? */
58#define SENTINEL_LEN sizeof(uint32_t)
59/** Given a mem_area_chunk_t with SENTINEL_LEN extra bytes allocated at the
60 * end, set those bytes. */
61#define SET_SENTINEL(chunk) \
62 STMT_BEGIN \
63 set_uint32( &(chunk)->U_MEM[chunk->mem_size], SENTINEL_VAL ); \
64 STMT_END
65/** Assert that the sentinel on a memarea is set correctly. */
66#define CHECK_SENTINEL(chunk) \
67 STMT_BEGIN \
68 uint32_t sent_val = get_uint32(&(chunk)->U_MEM[chunk->mem_size]); \
69 tor_assert(sent_val == SENTINEL_VAL); \
70 STMT_END
71#else /* !defined(USE_SENTINELS) */
72#define SENTINEL_LEN 0
73#define SET_SENTINEL(chunk) STMT_NIL
74#define CHECK_SENTINEL(chunk) STMT_NIL
75#endif /* defined(USE_SENTINELS) */
76
77/** Increment <b>ptr</b> until it is aligned to MEMAREA_ALIGN. */
78static inline void *
80{
81 uintptr_t x = (uintptr_t)ptr;
82 x = (x+MEMAREA_ALIGN_MASK) & ~MEMAREA_ALIGN_MASK;
83 /* Reinstate this if bug 930 ever reappears
84 tor_assert(((void*)x) >= ptr);
85 */
86 return (void*)x;
87}
88
89/** Implements part of a memarea. New memory is carved off from chunk->mem in
90 * increasing order until a request is too big, at which point a new chunk is
91 * allocated. */
92typedef struct memarea_chunk_t {
93 /** Next chunk in this area. Only kept around so we can free it. */
95 size_t mem_size; /**< How much RAM is available in mem, total? */
96 char *next_mem; /**< Next position in mem to allocate data at. If it's
97 * equal to mem+mem_size, this chunk is full. */
98#ifdef USE_ALIGNED_ATTRIBUTE
99 /** Actual content of the memory chunk. */
100 char mem[FLEXIBLE_ARRAY_MEMBER] __attribute__((aligned(MEMAREA_ALIGN)));
101#else
102 union {
103 char mem[1]; /**< Memory space in this chunk. */
104 void *void_for_alignment_; /**< Dummy; used to make sure mem is aligned. */
105 } u; /**< Union used to enforce alignment when we don't have support for
106 * doing it right. */
107#endif /* defined(USE_ALIGNED_ATTRIBUTE) */
109
110/** How many bytes are needed for overhead before we get to the memory part
111 * of a chunk? */
112#define CHUNK_HEADER_SIZE offsetof(memarea_chunk_t, U_MEM)
113
114/** What's the smallest that we'll allocate a chunk? */
115#define CHUNK_SIZE 4096
116
117/** A memarea_t is an allocation region for a set of small memory requests
118 * that will all be freed at once. */
119struct memarea_t {
120 memarea_chunk_t *first; /**< Top of the chunk stack: never NULL. */
121};
122
123/** Helper: allocate a new memarea chunk of around <b>chunk_size</b> bytes. */
124static memarea_chunk_t *
125alloc_chunk(size_t sz)
126{
128
129 size_t chunk_size = sz < CHUNK_SIZE ? CHUNK_SIZE : sz;
130 memarea_chunk_t *res;
131 chunk_size += SENTINEL_LEN;
132 res = tor_malloc(chunk_size);
133 res->next_chunk = NULL;
134 res->mem_size = chunk_size - CHUNK_HEADER_SIZE - SENTINEL_LEN;
135 res->next_mem = res->U_MEM;
137 ((char*)res)+chunk_size);
139 SET_SENTINEL(res);
140 return res;
141}
142
143/** Release <b>chunk</b> from a memarea. */
144static void
146{
147 CHECK_SENTINEL(chunk);
148 tor_free(chunk);
149}
150
151/** Allocate and return new memarea. */
152memarea_t *
154{
155 memarea_t *head = tor_malloc(sizeof(memarea_t));
157 return head;
158}
159
160/** Free <b>area</b>, invalidating all pointers returned from memarea_alloc()
161 * and friends for this area */
162void
164{
165 memarea_chunk_t *chunk, *next;
166 for (chunk = area->first; chunk; chunk = next) {
167 next = chunk->next_chunk;
169 }
170 area->first = NULL; /*fail fast on */
171 tor_free(area);
172}
173
174/** Forget about having allocated anything in <b>area</b>, and free some of
175 * the backing storage associated with it, as appropriate. Invalidates all
176 * pointers returned from memarea_alloc() for this area. */
177void
179{
180 memarea_chunk_t *chunk, *next;
181 if (area->first->next_chunk) {
182 for (chunk = area->first->next_chunk; chunk; chunk = next) {
183 next = chunk->next_chunk;
185 }
186 area->first->next_chunk = NULL;
187 }
188 area->first->next_mem = area->first->U_MEM;
189}
190
191/** Return true iff <b>p</b> is in a range that has been returned by an
192 * allocation from <b>area</b>. */
193int
194memarea_owns_ptr(const memarea_t *area, const void *p)
195{
196 memarea_chunk_t *chunk;
197 const char *ptr = p;
198 for (chunk = area->first; chunk; chunk = chunk->next_chunk) {
199 if (ptr >= chunk->U_MEM && ptr < chunk->next_mem)
200 return 1;
201 }
202 return 0;
203}
204
205/** Return a pointer to a chunk of memory in <b>area</b> of at least <b>sz</b>
206 * bytes. <b>sz</b> should be significantly smaller than the area's chunk
207 * size, though we can deal if it isn't. */
208void *
209memarea_alloc(memarea_t *area, size_t sz)
210{
211 memarea_chunk_t *chunk = area->first;
212 char *result;
213 tor_assert(chunk);
214 CHECK_SENTINEL(chunk);
216 if (sz == 0)
217 sz = 1;
218 tor_assert(chunk->next_mem <= chunk->U_MEM + chunk->mem_size);
219 const size_t space_remaining =
220 (chunk->U_MEM + chunk->mem_size) - chunk->next_mem;
221 if (sz > space_remaining) {
222 if (sz+CHUNK_HEADER_SIZE >= CHUNK_SIZE) {
223 /* This allocation is too big. Stick it in a special chunk, and put
224 * that chunk second in the list. */
226 new_chunk->next_chunk = chunk->next_chunk;
227 chunk->next_chunk = new_chunk;
228 chunk = new_chunk;
229 } else {
231 new_chunk->next_chunk = chunk;
232 area->first = chunk = new_chunk;
233 }
234 tor_assert(chunk->mem_size >= sz);
235 }
236 result = chunk->next_mem;
237 chunk->next_mem = chunk->next_mem + sz;
238 /* Reinstate these if bug 930 ever comes back
239 tor_assert(chunk->next_mem >= chunk->U_MEM);
240 tor_assert(chunk->next_mem <= chunk->U_MEM+chunk->mem_size);
241 */
242 chunk->next_mem = realign_pointer(chunk->next_mem);
243 return result;
244}
245
246/** As memarea_alloc(), but clears the memory it returns. */
247void *
249{
250 void *result = memarea_alloc(area, sz);
251 memset(result, 0, sz);
252 return result;
253}
254
255/** As memdup, but returns the memory from <b>area</b>. */
256void *
257memarea_memdup(memarea_t *area, const void *s, size_t n)
258{
259 char *result = memarea_alloc(area, n);
260 memcpy(result, s, n);
261 return result;
262}
263
264/** As strdup, but returns the memory from <b>area</b>. */
265char *
266memarea_strdup(memarea_t *area, const char *s)
267{
268 return memarea_memdup(area, s, strlen(s)+1);
269}
270
271/** As strndup, but returns the memory from <b>area</b>. */
272char *
273memarea_strndup(memarea_t *area, const char *s, size_t n)
274{
275 size_t ln = 0;
276 char *result;
278 for (ln = 0; ln < n && s[ln]; ++ln)
279 ;
280 result = memarea_alloc(area, ln+1);
281 memcpy(result, s, ln);
282 result[ln]='\0';
283 return result;
284}
285
286/** Set <b>allocated_out</b> to the number of bytes allocated in <b>area</b>,
287 * and <b>used_out</b> to the number of bytes currently used. */
288void
289memarea_get_stats(memarea_t *area, size_t *allocated_out, size_t *used_out)
290{
291 size_t a = 0, u = 0;
292 memarea_chunk_t *chunk;
293 for (chunk = area->first; chunk; chunk = chunk->next_chunk) {
294 CHECK_SENTINEL(chunk);
295 a += CHUNK_HEADER_SIZE + chunk->mem_size;
296 tor_assert(chunk->next_mem >= chunk->U_MEM);
297 u += CHUNK_HEADER_SIZE + (chunk->next_mem - chunk->U_MEM);
298 }
299 *allocated_out = a;
300 *used_out = u;
301}
302
303/** Assert that <b>area</b> is okay. */
304void
306{
307 memarea_chunk_t *chunk;
308 tor_assert(area->first);
309
310 for (chunk = area->first; chunk; chunk = chunk->next_chunk) {
311 CHECK_SENTINEL(chunk);
312 tor_assert(chunk->next_mem >= chunk->U_MEM);
313 tor_assert(chunk->next_mem <=
314 (char*) realign_pointer(chunk->U_MEM+chunk->mem_size));
315 }
316}
317
318#else /* defined(DISABLE_MEMORY_SENTINELS) */
319
320struct memarea_t {
321 smartlist_t *pieces;
322};
323
324memarea_t *
325memarea_new(void)
326{
327 memarea_t *ma = tor_malloc_zero(sizeof(memarea_t));
328 ma->pieces = smartlist_new();
329 return ma;
330}
331void
333{
334 memarea_clear(area);
335 smartlist_free(area->pieces);
336 tor_free(area);
337}
338void
340{
341 SMARTLIST_FOREACH(area->pieces, void *, p, tor_free_(p));
342 smartlist_clear(area->pieces);
343}
344int
345memarea_owns_ptr(const memarea_t *area, const void *ptr)
346{
347 SMARTLIST_FOREACH(area->pieces, const void *, p, if (ptr == p) return 1;);
348 return 0;
349}
350
351void *
352memarea_alloc(memarea_t *area, size_t sz)
353{
354 void *result = tor_malloc(sz);
355 smartlist_add(area->pieces, result);
356 return result;
357}
358
359void *
360memarea_alloc_zero(memarea_t *area, size_t sz)
361{
362 void *result = tor_malloc_zero(sz);
363 smartlist_add(area->pieces, result);
364 return result;
365}
366void *
367memarea_memdup(memarea_t *area, const void *s, size_t n)
368{
369 void *r = memarea_alloc(area, n);
370 memcpy(r, s, n);
371 return r;
372}
373char *
374memarea_strdup(memarea_t *area, const char *s)
375{
376 size_t n = strlen(s);
377 char *r = memarea_alloc(area, n+1);
378 memcpy(r, s, n);
379 r[n] = 0;
380 return r;
381}
382char *
383memarea_strndup(memarea_t *area, const char *s, size_t n)
384{
385 size_t ln = strnlen(s, n);
386 char *r = memarea_alloc(area, ln+1);
387 memcpy(r, s, ln);
388 r[ln] = 0;
389 return r;
390}
391void
393 size_t *allocated_out, size_t *used_out)
394{
395 (void)area;
396 *allocated_out = *used_out = 128;
397}
398void
400{
401 (void)area;
402}
403
404#endif /* !defined(DISABLE_MEMORY_SENTINELS) */
Inline functions for reading and writing multibyte values from the middle of strings,...
Headers for log.c.
void tor_free_(void *mem)
Definition: malloc.c:227
Headers for util_malloc.c.
#define tor_free(p)
Definition: malloc.h:56
#define SET_SENTINEL(chunk)
Definition: memarea.c:61
void * memarea_alloc(memarea_t *area, size_t sz)
Definition: memarea.c:209
#define CHUNK_HEADER_SIZE
Definition: memarea.c:112
char * memarea_strndup(memarea_t *area, const char *s, size_t n)
Definition: memarea.c:273
#define SENTINEL_LEN
Definition: memarea.c:58
#define MEMAREA_ALIGN
Definition: memarea.c:33
char * memarea_strdup(memarea_t *area, const char *s)
Definition: memarea.c:266
int memarea_owns_ptr(const memarea_t *area, const void *p)
Definition: memarea.c:194
static memarea_chunk_t * alloc_chunk(size_t sz)
Definition: memarea.c:125
void memarea_clear(memarea_t *area)
Definition: memarea.c:178
void memarea_get_stats(memarea_t *area, size_t *allocated_out, size_t *used_out)
Definition: memarea.c:289
memarea_t * memarea_new(void)
Definition: memarea.c:153
static void memarea_chunk_free_unchecked(memarea_chunk_t *chunk)
Definition: memarea.c:145
void * memarea_alloc_zero(memarea_t *area, size_t sz)
Definition: memarea.c:248
void memarea_assert_ok(memarea_t *area)
Definition: memarea.c:305
void memarea_drop_all_(memarea_t *area)
Definition: memarea.c:163
static void * realign_pointer(void *ptr)
Definition: memarea.c:79
#define CHUNK_SIZE
Definition: memarea.c:115
void * memarea_memdup(memarea_t *area, const void *s, size_t n)
Definition: memarea.c:257
#define CHECK_SENTINEL(chunk)
Definition: memarea.c:66
Header for memarea.c.
smartlist_t * smartlist_new(void)
void smartlist_add(smartlist_t *sl, void *element)
void smartlist_clear(smartlist_t *sl)
Top-level declarations for the smartlist_t dynamic array type.
Macros for iterating over the elements of a smartlist_t.
#define SMARTLIST_FOREACH(sl, type, var, cmd)
void * void_for_alignment_
Definition: memarea.c:104
union memarea_chunk_t::@32 u
struct memarea_chunk_t * next_chunk
Definition: memarea.c:94
char * next_mem
Definition: memarea.c:96
size_t mem_size
Definition: memarea.c:95
char mem[1]
Definition: memarea.c:103
memarea_chunk_t * first
Definition: memarea.c:120
Integer definitions used throughout Tor.
#define SIZE_T_CEILING
Definition: torint.h:126
Macros to manage assertions, fatal and non-fatal.
#define tor_assert(expr)
Definition: util_bug.h:103