fs_mistrust/
walk.rs

1//! An iterator to resolve and canonicalize a filename.
2
3use crate::{Error, Result};
4use std::{
5    collections::HashMap,
6    ffi::OsString,
7    fs::Metadata,
8    io,
9    iter::FusedIterator,
10    path::{Path, PathBuf},
11    sync::Arc,
12};
13
14/// The type of a single path inspected by [`Verifier`](crate::Verifier).
15#[derive(Debug, Copy, Clone, Eq, PartialEq)]
16#[allow(clippy::exhaustive_enums)]
17pub(crate) enum PathType {
18    /// This is indeed the final canonical path we were trying to resolve.
19    Final,
20    /// This is an intermediary canonical path.  It _should_ be a directory, but
21    /// it might not be if the path resolution is about to fail.
22    Intermediate,
23    /// This is a symbolic link.
24    Symlink,
25    /// This is a file _inside_ the target directory.
26    Content,
27}
28
29/// A single piece of a path.
30///
31/// We would use [`std::path::Component`] directly here, but we want an owned
32/// type.
33#[derive(Clone, Debug)]
34struct Component {
35    /// Is this a prefix of a windows path?
36    ///
37    /// We need to keep track of these, because we expect stat() to fail for
38    /// them.
39    #[cfg(target_family = "windows")]
40    is_windows_prefix: bool,
41    /// The textual value of the component.
42    text: OsString,
43}
44
45/// Windows error code that we expect to get when calling stat() on a prefix.
46#[cfg(target_family = "windows")]
47const INVALID_FUNCTION: i32 = 1;
48
49impl<'a> From<std::path::Component<'a>> for Component {
50    fn from(c: std::path::Component<'a>) -> Self {
51        #[cfg(target_family = "windows")]
52        let is_windows_prefix = matches!(c, std::path::Component::Prefix(_));
53        let text = c.as_os_str().to_owned();
54        Component {
55            #[cfg(target_family = "windows")]
56            is_windows_prefix,
57            text,
58        }
59    }
60}
61
62/// An iterator to resolve and canonicalize a filename, imitating the actual
63/// filesystem's lookup behavior.
64///
65/// A `ResolvePath` looks up a filename by visiting all intermediate steps in
66/// turn, starting from the root directory, and following symlinks.  It
67/// suppresses duplicates.  Every path that it yields will _either_ be:
68///   * A directory in canonical[^1] [^2] form.
69///   * `dir/link` where dir is a directory in canonical form, and `link` is a
70///     symlink in that directory.
71///   * `dir/file` where dir is a directory in canonical form, and `file` is a
72///     file in that directory.
73///
74/// [^1]: We define "canonical" in the same way as `Path::canonicalize`: a
75///   canonical path is an absolute path containing no "." or ".." elements, and
76///   no symlinks.
77/// [^2]: Strictly speaking, this iterator on its own cannot guarantee that the
78///   paths it yields are truly canonical.  or that they even represent the
79///   target.  It is possible that in between checking one path and the next,
80///   somebody will modify the first path to replace a directory with a symlink,
81///   or replace one symlink with another. To get this kind of guarantee, you
82///   have to use a [`Mistrust`](crate::Mistrust) to check the permissions on
83///   the directories as you go.  Even then, your guarantee is conditional on
84///   none of the intermediary directories having been changed by a trusted user
85///   at the wrong time.
86///   
87///
88/// # Implementation notes
89///
90/// Abstractly, at any given point, the directory that we're resolving looks
91/// like `"resolved"/"remaining"`, where `resolved` is the part that we've
92/// already looked at (in canonical form, with all symlinks resolved) and
93/// `remaining` is the part that we're still trying to resolve.
94///
95/// We represent `resolved` as a nice plain PathBuf, and  `remaining` as a stack
96/// of strings that we want to push on to the end of the path.  We initialize
97/// the algorithm with `resolved` empty and `remaining` seeded with the path we
98/// want to resolve.  Once there are no more parts to push, the path resolution
99/// is done.
100///
101/// The following invariants apply whenever we are outside of the `next`
102/// function:
103///    * `resolved.join(remaining)` is an alias for our target path.
104///    * `resolved` is in canonical form.
105///    * Every ancestor of `resolved` is a key of `already_inspected`.
106///
107/// # Limitations
108///
109/// Because we're using `Path::metadata` rather than something that would use
110/// `openat()` and `fstat()` under the hood, the permissions returned here are
111/// potentially susceptible to TOCTOU issues.  In this crate we address these
112/// issues by checking each yielded path immediately to make sure that only
113/// _trusted_ users can change it after it is checked.
114//
115// TODO: This code is potentially of use outside this crate.  Maybe it should be
116// public?
117#[derive(Clone, Debug)]
118pub(crate) struct ResolvePath {
119    /// The path that we have resolved so far.  It is always[^1] an absolute
120    /// path in canonical form: it contains no ".." or "." entries, and no
121    /// symlinks.
122    ///
123    /// [^1]: See note on [`ResolvePath`] about time-of-check/time-of-use
124    ///     issues.
125    resolved: PathBuf,
126
127    /// The parts of the path that we have _not yet resolved_.  The item on the
128    /// top of the stack (that is, the end), is the next element that we'd like
129    /// to add to `resolved`.
130    ///
131    /// This is in reverse order: later path components at the start of the `Vec` (bottom of stack)
132    //
133    // TODO: I'd like to have a more efficient representation of this; the
134    // current one has a lot of tiny little allocations.
135    stack: Vec<Component>,
136
137    /// If true, we have encountered a nonrecoverable error and cannot yield any
138    /// more items.
139    ///
140    /// We have a flag for this so that we know to stop when we've encountered
141    /// an error for `lstat()` or `readlink()`: If we can't do those, we can't
142    /// continue resolving the path.
143    terminated: bool,
144
145    /// How many more steps are we willing to take in resolving this path?  We
146    /// decrement this by 1 every time we pop an element from the stack.  If we
147    /// ever realize that we've run out of steps, we abort, since that's
148    /// probably a symlink loop.
149    steps_remaining: usize,
150
151    /// A cache of the paths that we have already yielded to the caller.  We keep
152    /// this cache so that we don't have to `lstat()` or `readlink()` any path
153    /// more than once.  If the path was a symlink, then the value associated
154    /// with it is the target of that symlink.  Otherwise, the value associated
155    /// with it is None.
156    already_inspected: HashMap<PathBuf, Option<PathBuf>>,
157}
158
159/// How many steps are we willing to take in resolving a path?
160const MAX_STEPS: usize = 1024;
161
162impl ResolvePath {
163    /// Create a new empty ResolvePath.
164    fn empty() -> Self {
165        ResolvePath {
166            resolved: PathBuf::new(),
167            stack: Vec::new(),
168            terminated: false,
169            steps_remaining: MAX_STEPS,
170            already_inspected: HashMap::new(),
171        }
172    }
173    /// Construct a new `ResolvePath` iterator to resolve the provided `path`.
174    pub(crate) fn new(path: impl AsRef<Path>) -> Result<Self> {
175        let mut resolve = Self::empty();
176        let path = path.as_ref();
177        // The path resolution algorithm will _end_ with resolving the path we
178        // were provided...
179        push_prefix(&mut resolve.stack, path);
180        // ...and if if the path is relative, we will first resolve the current
181        // directory.
182        if path.is_relative() {
183            // This can fail, sadly.
184            let cwd = std::env::current_dir().map_err(|e| Error::CurrentDirectory(Arc::new(e)))?;
185            if !cwd.is_absolute() {
186                // This should be impossible, but let's make sure.
187                let ioe =
188                    io::Error::other(format!("Current directory {:?} was not absolute.", cwd));
189                return Err(Error::CurrentDirectory(Arc::new(ioe)));
190            }
191            push_prefix(&mut resolve.stack, cwd.as_ref());
192        }
193
194        Ok(resolve)
195    }
196
197    /// Consume this ResolvePath and return as much work as it was able to
198    /// complete.
199    ///
200    /// If the path was completely resolved, then we return the resolved
201    /// canonical path, and None.
202    ///
203    /// If the path was _not_ completely resolved (the loop terminated early, or
204    /// ended with an error), we return the part that we were able to resolve,
205    /// and a path that would need to be joined onto it to reach the intended
206    /// destination.
207    pub(crate) fn into_result(self) -> (PathBuf, Option<PathBuf>) {
208        let remainder = if self.stack.is_empty() {
209            None
210        } else {
211            Some(self.stack.into_iter().rev().map(|c| c.text).collect())
212        };
213
214        (self.resolved, remainder)
215    }
216}
217
218/// Push the string representation of each component of `path` onto `stack`,
219/// from last to first, so that the first component of `path` winds up on the
220/// top of the stack.
221///
222/// (This is a separate function rather than a method for borrow-checker
223/// reasons.)
224fn push_prefix(stack: &mut Vec<Component>, path: &Path) {
225    stack.extend(path.components().rev().map(|component| component.into()));
226}
227
228impl Iterator for ResolvePath {
229    type Item = Result<(PathBuf, PathType, Metadata)>;
230
231    fn next(&mut self) -> Option<Self::Item> {
232        // Usually we'll return a value from our first attempt at this loop; we
233        // only call "continue" if we encounter a path that we have already
234        // given the caller.
235        loop {
236            // If we're fused, we're fused.  Nothing more to do.
237            if self.terminated {
238                return None;
239            }
240            // We will necessarily take at least `stack.len()` more steps: if we
241            // don't have that many steps left, we cannot succeed.  Probably
242            // this indicates a symlink loop, though it could also be a maze of
243            // some kind.
244            //
245            // TODO: Arguably, we should keep taking steps until we run out, but doing
246            // so might potentially lead to our stack getting huge.  This way we
247            // keep the stack depth under control.
248            if self.steps_remaining < self.stack.len() {
249                self.terminated = true;
250                return Some(Err(Error::StepsExceeded));
251            }
252
253            // Look at the next component on the stack...
254            let next_part = match self.stack.pop() {
255                Some(p) => p,
256                None => {
257                    // This is the successful case: we have finished resolving every component on the stack.
258                    self.terminated = true;
259                    return None;
260                }
261            };
262            self.steps_remaining -= 1;
263
264            // ..and add that component to our resolved path to see what we
265            // should inspect next.
266            let inspecting: std::borrow::Cow<'_, Path> = if next_part.text == "." {
267                // Do nothing.
268                self.resolved.as_path().into()
269            } else if next_part.text == ".." {
270                // We can safely remove the last part of our path: We know it is
271                // canonical, so ".." will not give surprising results.  (If we
272                // are already at the root, "PathBuf::pop" will do nothing.)
273                self.resolved
274                    .parent()
275                    .unwrap_or(self.resolved.as_path())
276                    .into()
277            } else {
278                // We extend our path.  This may _temporarily_ make `resolved`
279                // non-canonical if next_part is the name of a symlink; we'll
280                // fix that in a minute.
281                //
282                // This is the only thing that can ever make `resolved` longer.
283                self.resolved.join(&next_part.text).into()
284            };
285
286            // Now "inspecting" is the path we want to look at.  Later in this
287            // function, we should replace "self.resolved" with "inspecting" if we
288            // find that "inspecting" is a good canonical path.
289
290            match self.already_inspected.get(inspecting.as_ref()) {
291                Some(Some(link_target)) => {
292                    // We already inspected this path, and it is a symlink.
293                    // Follow it, and loop.
294                    //
295                    // (See notes below starting with "This is a symlink!" for
296                    // more explanation of what we're doing here.)
297                    push_prefix(&mut self.stack, link_target.as_path());
298                    continue;
299                }
300                Some(None) => {
301                    // We've already inspected this path, and it's canonical.
302                    // We told the caller about it once before, so we just loop.
303                    self.resolved = inspecting.into_owned();
304                    continue;
305                }
306                None => {
307                    // We haven't seen this path before. Carry on.
308                }
309            }
310
311            // Look up the lstat() of the file, to see if it's a symlink.
312            let metadata = match inspecting.symlink_metadata() {
313                Ok(m) => m,
314                #[cfg(target_family = "windows")]
315                Err(e)
316                    if next_part.is_windows_prefix
317                        && e.raw_os_error() == Some(INVALID_FUNCTION) =>
318                {
319                    // We expected an error here, and we got one. Skip over this
320                    // path component and look at the next.
321                    self.resolved = inspecting.into_owned();
322                    continue;
323                }
324                Err(e) => {
325                    // Oops: can't lstat.  Move the last component back on to the stack, and terminate.
326                    self.stack.push(next_part);
327                    self.terminated = true;
328                    return Some(Err(Error::inspecting(e, inspecting)));
329                }
330            };
331
332            if metadata.file_type().is_symlink() {
333                // This is a symlink!
334                //
335                // We have to find out where it leads us...
336                let link_target = match inspecting.read_link() {
337                    Ok(t) => t,
338                    Err(e) => {
339                        // Oops: can't readlink.  Move the last component back on to the stack, and terminate.
340                        self.stack.push(next_part);
341                        self.terminated = true;
342                        return Some(Err(Error::inspecting(e, inspecting)));
343                    }
344                };
345
346                // We don't modify self.resolved here: we would be putting a
347                // symlink onto it, and symlinks aren't canonical.  (If the
348                // symlink is relative, then we'll continue resolving it from
349                // its target on the next iteration.  If the symlink is
350                // absolute, its first component will be "/" or the equivalent,
351                // which will replace self.resolved.)
352                push_prefix(&mut self.stack, link_target.as_path());
353                self.already_inspected
354                    .insert(inspecting.to_path_buf(), Some(link_target));
355                // We yield the link name, not the value of resolved.
356                return Some(Ok((inspecting.into_owned(), PathType::Symlink, metadata)));
357            } else {
358                // It's not a symlink: Therefore it is a real canonical
359                // directory or file that exists.
360                self.already_inspected
361                    .insert(inspecting.to_path_buf(), None);
362                self.resolved = inspecting.into_owned();
363                let path_type = if self.stack.is_empty() {
364                    PathType::Final
365                } else {
366                    PathType::Intermediate
367                };
368                return Some(Ok((self.resolved.clone(), path_type, metadata)));
369            }
370        }
371    }
372}
373
374impl FusedIterator for ResolvePath {}
375
376/*
377   Not needed, but can be a big help with debugging.
378impl std::fmt::Display for ResolvePath {
379    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
380        let remaining: PathBuf = self.stack.iter().rev().collect();
381        write!(f, "{{ {:?} }}/{{ {:?} }}", &self.resolved, remaining,)
382    }
383}
384*/
385
386#[cfg(test)]
387mod test {
388    // @@ begin test lint list maintained by maint/add_warning @@
389    #![allow(clippy::bool_assert_comparison)]
390    #![allow(clippy::clone_on_copy)]
391    #![allow(clippy::dbg_macro)]
392    #![allow(clippy::mixed_attributes_style)]
393    #![allow(clippy::print_stderr)]
394    #![allow(clippy::print_stdout)]
395    #![allow(clippy::single_char_pattern)]
396    #![allow(clippy::unwrap_used)]
397    #![allow(clippy::unchecked_duration_subtraction)]
398    #![allow(clippy::useless_vec)]
399    #![allow(clippy::needless_pass_by_value)]
400    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
401    use super::*;
402    use crate::testing;
403
404    #[cfg(target_family = "unix")]
405    use crate::testing::LinkType;
406
407    /// Helper: skip `r` past the first occurrence of the path `p` in a
408    /// successful return.
409    fn skip_past(r: &mut ResolvePath, p: impl AsRef<Path>) {
410        #[allow(clippy::manual_flatten)]
411        for item in r {
412            if let Ok((name, _, _)) = item {
413                if name == p.as_ref() {
414                    break;
415                }
416            }
417        }
418    }
419
420    /// Helper: change the prefix on `path` (if any) to a verbatim prefix.
421    ///
422    /// We do this to match the output of `fs::canonicalize` on Windows, for
423    /// testing.
424    ///
425    /// If this function proves to be hard-to-maintain, we should consider
426    /// alternative ways of testing what it provides.
427    fn make_prefix_verbatim(path: PathBuf) -> PathBuf {
428        let mut components = path.components();
429        if let Some(std::path::Component::Prefix(prefix)) = components.next() {
430            use std::path::Prefix as P;
431            let verbatim = match prefix.kind() {
432                P::UNC(server, share) => {
433                    let mut p = OsString::from(r"\\?\UNC\");
434                    p.push(server);
435                    p.push("/");
436                    p.push(share);
437                    p
438                }
439                P::Disk(disk) => format!(r"\\?\{}:", disk as char).into(),
440                _ => return path, // original prefix is fine.
441            };
442            let mut newpath = PathBuf::from(verbatim);
443            newpath.extend(components.map(|c| c.as_os_str()));
444            newpath
445        } else {
446            path // nothing to do.
447        }
448    }
449
450    #[test]
451    fn simple_path() {
452        let d = testing::Dir::new();
453        let root = d.canonical_root();
454
455        // Try resolving a simple path that exists.
456        d.file("a/b/c");
457        let mut r = ResolvePath::new(d.path("a/b/c")).unwrap();
458        skip_past(&mut r, root);
459        let mut so_far = root.to_path_buf();
460        for (c, p) in Path::new("a/b/c").components().zip(&mut r) {
461            let (p, pt, meta) = p.unwrap();
462            if pt == PathType::Final {
463                assert_eq!(c.as_os_str(), "c");
464                assert!(meta.is_file());
465            } else {
466                assert_eq!(pt, PathType::Intermediate);
467                assert!(meta.is_dir());
468            }
469            so_far.push(c);
470            assert_eq!(so_far, p);
471        }
472        let (canonical, rest) = r.into_result();
473        assert_eq!(canonical, d.path("a/b/c").canonicalize().unwrap());
474        assert!(rest.is_none());
475
476        // Same as above, starting from a relative path to the target.
477        let mut r = ResolvePath::new(d.relative_root().join("a/b/c")).unwrap();
478        skip_past(&mut r, root);
479        let mut so_far = root.to_path_buf();
480        for (c, p) in Path::new("a/b/c").components().zip(&mut r) {
481            let (p, pt, meta) = p.unwrap();
482            if pt == PathType::Final {
483                assert_eq!(c.as_os_str(), "c");
484                assert!(meta.is_file());
485            } else {
486                assert_eq!(pt, PathType::Intermediate);
487                assert!(meta.is_dir());
488            }
489            so_far.push(c);
490            assert_eq!(so_far, p);
491        }
492        let (canonical, rest) = r.into_result();
493        let canonical = make_prefix_verbatim(canonical);
494        assert_eq!(canonical, d.path("a/b/c").canonicalize().unwrap());
495        assert!(rest.is_none());
496
497        // Try resolving a simple path that doesn't exist.
498        let mut r = ResolvePath::new(d.path("a/xxx/yyy")).unwrap();
499        skip_past(&mut r, root);
500        let (p, pt, _) = r.next().unwrap().unwrap();
501        assert_eq!(p, root.join("a"));
502        assert_eq!(pt, PathType::Intermediate);
503        let e = r.next().unwrap();
504        match e {
505            Err(Error::NotFound(p)) => assert_eq!(p, root.join("a/xxx")),
506            other => panic!("{:?}", other),
507        }
508        let (start, rest) = r.into_result();
509        assert_eq!(start, d.path("a").canonicalize().unwrap());
510        assert_eq!(rest.unwrap(), Path::new("xxx/yyy"));
511    }
512
513    #[test]
514    #[cfg(target_family = "unix")]
515    fn repeats() {
516        let d = testing::Dir::new();
517        let root = d.canonical_root();
518
519        // We're going to try a path with ..s in it, and make sure that we only
520        // get each given path once.
521        d.dir("a/b/c/d");
522        let mut r = ResolvePath::new(root.join("a/b/../b/../b/c/../c/d")).unwrap();
523        skip_past(&mut r, root);
524        let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
525        assert_eq!(
526            paths,
527            vec![
528                root.join("a"),
529                root.join("a/b"),
530                root.join("a/b/c"),
531                root.join("a/b/c/d"),
532            ]
533        );
534
535        // Now try a symlink to a higher directory, and make sure we only get
536        // each path once.
537        d.link_rel(LinkType::Dir, "../../", "a/b/c/rel_lnk");
538        let mut r = ResolvePath::new(root.join("a/b/c/rel_lnk/b/c/d")).unwrap();
539        skip_past(&mut r, root);
540        let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
541        assert_eq!(
542            paths,
543            vec![
544                root.join("a"),
545                root.join("a/b"),
546                root.join("a/b/c"),
547                root.join("a/b/c/rel_lnk"),
548                root.join("a/b/c/d"),
549            ]
550        );
551
552        // Once more, with an absolute symlink.
553        d.link_abs(LinkType::Dir, "a", "a/b/c/abs_lnk");
554        let mut r = ResolvePath::new(root.join("a/b/c/abs_lnk/b/c/d")).unwrap();
555        skip_past(&mut r, root);
556        let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
557        assert_eq!(
558            paths,
559            vec![
560                root.join("a"),
561                root.join("a/b"),
562                root.join("a/b/c"),
563                root.join("a/b/c/abs_lnk"),
564                root.join("a/b/c/d"),
565            ]
566        );
567
568        // One more, with multiple links.
569        let mut r = ResolvePath::new(root.join("a/b/c/abs_lnk/b/c/rel_lnk/b/c/d")).unwrap();
570        skip_past(&mut r, root);
571        let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
572        assert_eq!(
573            paths,
574            vec![
575                root.join("a"),
576                root.join("a/b"),
577                root.join("a/b/c"),
578                root.join("a/b/c/abs_lnk"),
579                root.join("a/b/c/rel_lnk"),
580                root.join("a/b/c/d"),
581            ]
582        );
583
584        // Last time, visiting the same links more than once.
585        let mut r =
586            ResolvePath::new(root.join("a/b/c/abs_lnk/b/c/rel_lnk/b/c/rel_lnk/b/c/abs_lnk/b/c/d"))
587                .unwrap();
588        skip_past(&mut r, root);
589        let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
590        assert_eq!(
591            paths,
592            vec![
593                root.join("a"),
594                root.join("a/b"),
595                root.join("a/b/c"),
596                root.join("a/b/c/abs_lnk"),
597                root.join("a/b/c/rel_lnk"),
598                root.join("a/b/c/d"),
599            ]
600        );
601    }
602
603    #[test]
604    #[cfg(target_family = "unix")]
605    fn looping() {
606        let d = testing::Dir::new();
607        let root = d.canonical_root();
608
609        d.dir("a/b/c");
610        // This file links to itself.  We should hit our loop detector and barf.
611        d.link_rel(LinkType::File, "../../b/c/d", "a/b/c/d");
612        let mut r = ResolvePath::new(root.join("a/b/c/d")).unwrap();
613        skip_past(&mut r, root);
614        assert_eq!(r.next().unwrap().unwrap().0, root.join("a"));
615        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b"));
616        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c"));
617        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c/d"));
618        assert!(matches!(
619            r.next().unwrap().unwrap_err(),
620            Error::StepsExceeded
621        ));
622        assert!(r.next().is_none());
623
624        // These directories link to each other.
625        d.link_rel(LinkType::Dir, "./f", "a/b/c/e");
626        d.link_rel(LinkType::Dir, "./e", "a/b/c/f");
627        let mut r = ResolvePath::new(root.join("a/b/c/e/413")).unwrap();
628        skip_past(&mut r, root);
629        assert_eq!(r.next().unwrap().unwrap().0, root.join("a"));
630        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b"));
631        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c"));
632        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c/e"));
633        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c/f"));
634        assert!(matches!(
635            r.next().unwrap().unwrap_err(),
636            Error::StepsExceeded
637        ));
638        assert!(r.next().is_none());
639    }
640
641    #[cfg(target_family = "unix")]
642    #[test]
643    fn unix_permissions() {
644        use std::os::unix::prelude::PermissionsExt;
645
646        let d = testing::Dir::new();
647        let root = d.canonical_root();
648        d.dir("a/b/c/d/e");
649        d.chmod("a", 0o751);
650        d.chmod("a/b", 0o711);
651        d.chmod("a/b/c", 0o715);
652        d.chmod("a/b/c/d", 0o000);
653
654        let mut r = ResolvePath::new(root.join("a/b/c/d/e/413")).unwrap();
655        skip_past(&mut r, root);
656        let resolvable: Vec<_> = (&mut r)
657            .take(4)
658            .map(|item| {
659                let (p, _, m) = item.unwrap();
660                (
661                    p.strip_prefix(root).unwrap().to_string_lossy().into_owned(),
662                    m.permissions().mode() & 0o777,
663                )
664            })
665            .collect();
666        let expected = vec![
667            ("a", 0o751),
668            ("a/b", 0o711),
669            ("a/b/c", 0o715),
670            ("a/b/c/d", 0o000),
671        ];
672        for ((p1, m1), (p2, m2)) in resolvable.iter().zip(expected.iter()) {
673            assert_eq!(p1, p2);
674            assert_eq!(m1, m2);
675        }
676
677        #[cfg(not(target_os = "android"))]
678        if pwd_grp::getuid() == 0 {
679            // We won't actually get a CouldNotInspect if we're running as root,
680            // since root can read directories that are mode 000.
681            return;
682        }
683
684        let err = r.next().unwrap();
685        assert!(matches!(err, Err(Error::CouldNotInspect(_, _))));
686
687        assert!(r.next().is_none());
688    }
689
690    #[test]
691    fn past_root() {
692        let d = testing::Dir::new();
693        let root = d.canonical_root();
694        d.dir("a/b");
695        d.chmod("a", 0o700);
696        d.chmod("a/b", 0o700);
697
698        let root_as_relative: PathBuf = root
699            .components()
700            .filter(|c| matches!(c, std::path::Component::Normal(_)))
701            .collect();
702        let n = root.components().count();
703        // Start with our the "root" directory of our Dir...
704        let mut inspect_path = root.to_path_buf();
705        // Then go way past the root of the filesystem
706        for _ in 0..n * 2 {
707            inspect_path.push("..");
708        }
709        // Then back down to the "root" directory of the dir..
710        inspect_path.push(root_as_relative);
711        // Then to a/b.
712        inspect_path.push("a/b");
713
714        let r = ResolvePath::new(inspect_path.clone()).unwrap();
715        let final_path = r.last().unwrap().unwrap().0;
716        assert_eq!(final_path, inspect_path.canonicalize().unwrap());
717    }
718}