fs_mistrust/walk.rs
1//! An iterator to resolve and canonicalize a filename.
2
3use crate::{Error, Result};
4use std::{
5 collections::HashMap,
6 ffi::OsString,
7 fs::Metadata,
8 io,
9 iter::FusedIterator,
10 path::{Path, PathBuf},
11 sync::Arc,
12};
13
14/// The type of a single path inspected by [`Verifier`](crate::Verifier).
15#[derive(Debug, Copy, Clone, Eq, PartialEq)]
16#[allow(clippy::exhaustive_enums)]
17pub(crate) enum PathType {
18 /// This is indeed the final canonical path we were trying to resolve.
19 Final,
20 /// This is an intermediary canonical path. It _should_ be a directory, but
21 /// it might not be if the path resolution is about to fail.
22 Intermediate,
23 /// This is a symbolic link.
24 Symlink,
25 /// This is a file _inside_ the target directory.
26 Content,
27}
28
29/// A single piece of a path.
30///
31/// We would use [`std::path::Component`] directly here, but we want an owned
32/// type.
33#[derive(Clone, Debug)]
34struct Component {
35 /// Is this a prefix of a windows path?
36 ///
37 /// We need to keep track of these, because we expect stat() to fail for
38 /// them.
39 #[cfg(target_family = "windows")]
40 is_windows_prefix: bool,
41 /// The textual value of the component.
42 text: OsString,
43}
44
45/// Windows error code that we expect to get when calling stat() on a prefix.
46#[cfg(target_family = "windows")]
47const INVALID_FUNCTION: i32 = 1;
48
49impl<'a> From<std::path::Component<'a>> for Component {
50 fn from(c: std::path::Component<'a>) -> Self {
51 #[cfg(target_family = "windows")]
52 let is_windows_prefix = matches!(c, std::path::Component::Prefix(_));
53 let text = c.as_os_str().to_owned();
54 Component {
55 #[cfg(target_family = "windows")]
56 is_windows_prefix,
57 text,
58 }
59 }
60}
61
62/// An iterator to resolve and canonicalize a filename, imitating the actual
63/// filesystem's lookup behavior.
64///
65/// A `ResolvePath` looks up a filename by visiting all intermediate steps in
66/// turn, starting from the root directory, and following symlinks. It
67/// suppresses duplicates. Every path that it yields will _either_ be:
68/// * A directory in canonical[^1] [^2] form.
69/// * `dir/link` where dir is a directory in canonical form, and `link` is a
70/// symlink in that directory.
71/// * `dir/file` where dir is a directory in canonical form, and `file` is a
72/// file in that directory.
73///
74/// [^1]: We define "canonical" in the same way as `Path::canonicalize`: a
75/// canonical path is an absolute path containing no "." or ".." elements, and
76/// no symlinks.
77/// [^2]: Strictly speaking, this iterator on its own cannot guarantee that the
78/// paths it yields are truly canonical. or that they even represent the
79/// target. It is possible that in between checking one path and the next,
80/// somebody will modify the first path to replace a directory with a symlink,
81/// or replace one symlink with another. To get this kind of guarantee, you
82/// have to use a [`Mistrust`](crate::Mistrust) to check the permissions on
83/// the directories as you go. Even then, your guarantee is conditional on
84/// none of the intermediary directories having been changed by a trusted user
85/// at the wrong time.
86///
87///
88/// # Implementation notes
89///
90/// Abstractly, at any given point, the directory that we're resolving looks
91/// like `"resolved"/"remaining"`, where `resolved` is the part that we've
92/// already looked at (in canonical form, with all symlinks resolved) and
93/// `remaining` is the part that we're still trying to resolve.
94///
95/// We represent `resolved` as a nice plain PathBuf, and `remaining` as a stack
96/// of strings that we want to push on to the end of the path. We initialize
97/// the algorithm with `resolved` empty and `remaining` seeded with the path we
98/// want to resolve. Once there are no more parts to push, the path resolution
99/// is done.
100///
101/// The following invariants apply whenever we are outside of the `next`
102/// function:
103/// * `resolved.join(remaining)` is an alias for our target path.
104/// * `resolved` is in canonical form.
105/// * Every ancestor of `resolved` is a key of `already_inspected`.
106///
107/// # Limitations
108///
109/// Because we're using `Path::metadata` rather than something that would use
110/// `openat()` and `fstat()` under the hood, the permissions returned here are
111/// potentially susceptible to TOCTOU issues. In this crate we address these
112/// issues by checking each yielded path immediately to make sure that only
113/// _trusted_ users can change it after it is checked.
114//
115// TODO: This code is potentially of use outside this crate. Maybe it should be
116// public?
117#[derive(Clone, Debug)]
118pub(crate) struct ResolvePath {
119 /// The path that we have resolved so far. It is always[^1] an absolute
120 /// path in canonical form: it contains no ".." or "." entries, and no
121 /// symlinks.
122 ///
123 /// [^1]: See note on [`ResolvePath`] about time-of-check/time-of-use
124 /// issues.
125 resolved: PathBuf,
126
127 /// The parts of the path that we have _not yet resolved_. The item on the
128 /// top of the stack (that is, the end), is the next element that we'd like
129 /// to add to `resolved`.
130 ///
131 /// This is in reverse order: later path components at the start of the `Vec` (bottom of stack)
132 //
133 // TODO: I'd like to have a more efficient representation of this; the
134 // current one has a lot of tiny little allocations.
135 stack: Vec<Component>,
136
137 /// If true, we have encountered a nonrecoverable error and cannot yield any
138 /// more items.
139 ///
140 /// We have a flag for this so that we know to stop when we've encountered
141 /// an error for `lstat()` or `readlink()`: If we can't do those, we can't
142 /// continue resolving the path.
143 terminated: bool,
144
145 /// How many more steps are we willing to take in resolving this path? We
146 /// decrement this by 1 every time we pop an element from the stack. If we
147 /// ever realize that we've run out of steps, we abort, since that's
148 /// probably a symlink loop.
149 steps_remaining: usize,
150
151 /// A cache of the paths that we have already yielded to the caller. We keep
152 /// this cache so that we don't have to `lstat()` or `readlink()` any path
153 /// more than once. If the path was a symlink, then the value associated
154 /// with it is the target of that symlink. Otherwise, the value associated
155 /// with it is None.
156 already_inspected: HashMap<PathBuf, Option<PathBuf>>,
157}
158
159/// How many steps are we willing to take in resolving a path?
160const MAX_STEPS: usize = 1024;
161
162impl ResolvePath {
163 /// Create a new empty ResolvePath.
164 fn empty() -> Self {
165 ResolvePath {
166 resolved: PathBuf::new(),
167 stack: Vec::new(),
168 terminated: false,
169 steps_remaining: MAX_STEPS,
170 already_inspected: HashMap::new(),
171 }
172 }
173 /// Construct a new `ResolvePath` iterator to resolve the provided `path`.
174 pub(crate) fn new(path: impl AsRef<Path>) -> Result<Self> {
175 let mut resolve = Self::empty();
176 let path = path.as_ref();
177 // The path resolution algorithm will _end_ with resolving the path we
178 // were provided...
179 push_prefix(&mut resolve.stack, path);
180 // ...and if if the path is relative, we will first resolve the current
181 // directory.
182 if path.is_relative() {
183 // This can fail, sadly.
184 let cwd = std::env::current_dir().map_err(|e| Error::CurrentDirectory(Arc::new(e)))?;
185 if !cwd.is_absolute() {
186 // This should be impossible, but let's make sure.
187 let ioe =
188 io::Error::other(format!("Current directory {:?} was not absolute.", cwd));
189 return Err(Error::CurrentDirectory(Arc::new(ioe)));
190 }
191 push_prefix(&mut resolve.stack, cwd.as_ref());
192 }
193
194 Ok(resolve)
195 }
196
197 /// Consume this ResolvePath and return as much work as it was able to
198 /// complete.
199 ///
200 /// If the path was completely resolved, then we return the resolved
201 /// canonical path, and None.
202 ///
203 /// If the path was _not_ completely resolved (the loop terminated early, or
204 /// ended with an error), we return the part that we were able to resolve,
205 /// and a path that would need to be joined onto it to reach the intended
206 /// destination.
207 pub(crate) fn into_result(self) -> (PathBuf, Option<PathBuf>) {
208 let remainder = if self.stack.is_empty() {
209 None
210 } else {
211 Some(self.stack.into_iter().rev().map(|c| c.text).collect())
212 };
213
214 (self.resolved, remainder)
215 }
216}
217
218/// Push the string representation of each component of `path` onto `stack`,
219/// from last to first, so that the first component of `path` winds up on the
220/// top of the stack.
221///
222/// (This is a separate function rather than a method for borrow-checker
223/// reasons.)
224fn push_prefix(stack: &mut Vec<Component>, path: &Path) {
225 stack.extend(path.components().rev().map(|component| component.into()));
226}
227
228impl Iterator for ResolvePath {
229 type Item = Result<(PathBuf, PathType, Metadata)>;
230
231 fn next(&mut self) -> Option<Self::Item> {
232 // Usually we'll return a value from our first attempt at this loop; we
233 // only call "continue" if we encounter a path that we have already
234 // given the caller.
235 loop {
236 // If we're fused, we're fused. Nothing more to do.
237 if self.terminated {
238 return None;
239 }
240 // We will necessarily take at least `stack.len()` more steps: if we
241 // don't have that many steps left, we cannot succeed. Probably
242 // this indicates a symlink loop, though it could also be a maze of
243 // some kind.
244 //
245 // TODO: Arguably, we should keep taking steps until we run out, but doing
246 // so might potentially lead to our stack getting huge. This way we
247 // keep the stack depth under control.
248 if self.steps_remaining < self.stack.len() {
249 self.terminated = true;
250 return Some(Err(Error::StepsExceeded));
251 }
252
253 // Look at the next component on the stack...
254 let next_part = match self.stack.pop() {
255 Some(p) => p,
256 None => {
257 // This is the successful case: we have finished resolving every component on the stack.
258 self.terminated = true;
259 return None;
260 }
261 };
262 self.steps_remaining -= 1;
263
264 // ..and add that component to our resolved path to see what we
265 // should inspect next.
266 let inspecting: std::borrow::Cow<'_, Path> = if next_part.text == "." {
267 // Do nothing.
268 self.resolved.as_path().into()
269 } else if next_part.text == ".." {
270 // We can safely remove the last part of our path: We know it is
271 // canonical, so ".." will not give surprising results. (If we
272 // are already at the root, "PathBuf::pop" will do nothing.)
273 self.resolved
274 .parent()
275 .unwrap_or(self.resolved.as_path())
276 .into()
277 } else {
278 // We extend our path. This may _temporarily_ make `resolved`
279 // non-canonical if next_part is the name of a symlink; we'll
280 // fix that in a minute.
281 //
282 // This is the only thing that can ever make `resolved` longer.
283 self.resolved.join(&next_part.text).into()
284 };
285
286 // Now "inspecting" is the path we want to look at. Later in this
287 // function, we should replace "self.resolved" with "inspecting" if we
288 // find that "inspecting" is a good canonical path.
289
290 match self.already_inspected.get(inspecting.as_ref()) {
291 Some(Some(link_target)) => {
292 // We already inspected this path, and it is a symlink.
293 // Follow it, and loop.
294 //
295 // (See notes below starting with "This is a symlink!" for
296 // more explanation of what we're doing here.)
297 push_prefix(&mut self.stack, link_target.as_path());
298 continue;
299 }
300 Some(None) => {
301 // We've already inspected this path, and it's canonical.
302 // We told the caller about it once before, so we just loop.
303 self.resolved = inspecting.into_owned();
304 continue;
305 }
306 None => {
307 // We haven't seen this path before. Carry on.
308 }
309 }
310
311 // Look up the lstat() of the file, to see if it's a symlink.
312 let metadata = match inspecting.symlink_metadata() {
313 Ok(m) => m,
314 #[cfg(target_family = "windows")]
315 Err(e)
316 if next_part.is_windows_prefix
317 && e.raw_os_error() == Some(INVALID_FUNCTION) =>
318 {
319 // We expected an error here, and we got one. Skip over this
320 // path component and look at the next.
321 self.resolved = inspecting.into_owned();
322 continue;
323 }
324 Err(e) => {
325 // Oops: can't lstat. Move the last component back on to the stack, and terminate.
326 self.stack.push(next_part);
327 self.terminated = true;
328 return Some(Err(Error::inspecting(e, inspecting)));
329 }
330 };
331
332 if metadata.file_type().is_symlink() {
333 // This is a symlink!
334 //
335 // We have to find out where it leads us...
336 let link_target = match inspecting.read_link() {
337 Ok(t) => t,
338 Err(e) => {
339 // Oops: can't readlink. Move the last component back on to the stack, and terminate.
340 self.stack.push(next_part);
341 self.terminated = true;
342 return Some(Err(Error::inspecting(e, inspecting)));
343 }
344 };
345
346 // We don't modify self.resolved here: we would be putting a
347 // symlink onto it, and symlinks aren't canonical. (If the
348 // symlink is relative, then we'll continue resolving it from
349 // its target on the next iteration. If the symlink is
350 // absolute, its first component will be "/" or the equivalent,
351 // which will replace self.resolved.)
352 push_prefix(&mut self.stack, link_target.as_path());
353 self.already_inspected
354 .insert(inspecting.to_path_buf(), Some(link_target));
355 // We yield the link name, not the value of resolved.
356 return Some(Ok((inspecting.into_owned(), PathType::Symlink, metadata)));
357 } else {
358 // It's not a symlink: Therefore it is a real canonical
359 // directory or file that exists.
360 self.already_inspected
361 .insert(inspecting.to_path_buf(), None);
362 self.resolved = inspecting.into_owned();
363 let path_type = if self.stack.is_empty() {
364 PathType::Final
365 } else {
366 PathType::Intermediate
367 };
368 return Some(Ok((self.resolved.clone(), path_type, metadata)));
369 }
370 }
371 }
372}
373
374impl FusedIterator for ResolvePath {}
375
376/*
377 Not needed, but can be a big help with debugging.
378impl std::fmt::Display for ResolvePath {
379 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
380 let remaining: PathBuf = self.stack.iter().rev().collect();
381 write!(f, "{{ {:?} }}/{{ {:?} }}", &self.resolved, remaining,)
382 }
383}
384*/
385
386#[cfg(test)]
387mod test {
388 // @@ begin test lint list maintained by maint/add_warning @@
389 #![allow(clippy::bool_assert_comparison)]
390 #![allow(clippy::clone_on_copy)]
391 #![allow(clippy::dbg_macro)]
392 #![allow(clippy::mixed_attributes_style)]
393 #![allow(clippy::print_stderr)]
394 #![allow(clippy::print_stdout)]
395 #![allow(clippy::single_char_pattern)]
396 #![allow(clippy::unwrap_used)]
397 #![allow(clippy::unchecked_duration_subtraction)]
398 #![allow(clippy::useless_vec)]
399 #![allow(clippy::needless_pass_by_value)]
400 //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
401 use super::*;
402 use crate::testing;
403
404 #[cfg(target_family = "unix")]
405 use crate::testing::LinkType;
406
407 /// Helper: skip `r` past the first occurrence of the path `p` in a
408 /// successful return.
409 fn skip_past(r: &mut ResolvePath, p: impl AsRef<Path>) {
410 #[allow(clippy::manual_flatten)]
411 for item in r {
412 if let Ok((name, _, _)) = item {
413 if name == p.as_ref() {
414 break;
415 }
416 }
417 }
418 }
419
420 /// Helper: change the prefix on `path` (if any) to a verbatim prefix.
421 ///
422 /// We do this to match the output of `fs::canonicalize` on Windows, for
423 /// testing.
424 ///
425 /// If this function proves to be hard-to-maintain, we should consider
426 /// alternative ways of testing what it provides.
427 fn make_prefix_verbatim(path: PathBuf) -> PathBuf {
428 let mut components = path.components();
429 if let Some(std::path::Component::Prefix(prefix)) = components.next() {
430 use std::path::Prefix as P;
431 let verbatim = match prefix.kind() {
432 P::UNC(server, share) => {
433 let mut p = OsString::from(r"\\?\UNC\");
434 p.push(server);
435 p.push("/");
436 p.push(share);
437 p
438 }
439 P::Disk(disk) => format!(r"\\?\{}:", disk as char).into(),
440 _ => return path, // original prefix is fine.
441 };
442 let mut newpath = PathBuf::from(verbatim);
443 newpath.extend(components.map(|c| c.as_os_str()));
444 newpath
445 } else {
446 path // nothing to do.
447 }
448 }
449
450 #[test]
451 fn simple_path() {
452 let d = testing::Dir::new();
453 let root = d.canonical_root();
454
455 // Try resolving a simple path that exists.
456 d.file("a/b/c");
457 let mut r = ResolvePath::new(d.path("a/b/c")).unwrap();
458 skip_past(&mut r, root);
459 let mut so_far = root.to_path_buf();
460 for (c, p) in Path::new("a/b/c").components().zip(&mut r) {
461 let (p, pt, meta) = p.unwrap();
462 if pt == PathType::Final {
463 assert_eq!(c.as_os_str(), "c");
464 assert!(meta.is_file());
465 } else {
466 assert_eq!(pt, PathType::Intermediate);
467 assert!(meta.is_dir());
468 }
469 so_far.push(c);
470 assert_eq!(so_far, p);
471 }
472 let (canonical, rest) = r.into_result();
473 assert_eq!(canonical, d.path("a/b/c").canonicalize().unwrap());
474 assert!(rest.is_none());
475
476 // Same as above, starting from a relative path to the target.
477 let mut r = ResolvePath::new(d.relative_root().join("a/b/c")).unwrap();
478 skip_past(&mut r, root);
479 let mut so_far = root.to_path_buf();
480 for (c, p) in Path::new("a/b/c").components().zip(&mut r) {
481 let (p, pt, meta) = p.unwrap();
482 if pt == PathType::Final {
483 assert_eq!(c.as_os_str(), "c");
484 assert!(meta.is_file());
485 } else {
486 assert_eq!(pt, PathType::Intermediate);
487 assert!(meta.is_dir());
488 }
489 so_far.push(c);
490 assert_eq!(so_far, p);
491 }
492 let (canonical, rest) = r.into_result();
493 let canonical = make_prefix_verbatim(canonical);
494 assert_eq!(canonical, d.path("a/b/c").canonicalize().unwrap());
495 assert!(rest.is_none());
496
497 // Try resolving a simple path that doesn't exist.
498 let mut r = ResolvePath::new(d.path("a/xxx/yyy")).unwrap();
499 skip_past(&mut r, root);
500 let (p, pt, _) = r.next().unwrap().unwrap();
501 assert_eq!(p, root.join("a"));
502 assert_eq!(pt, PathType::Intermediate);
503 let e = r.next().unwrap();
504 match e {
505 Err(Error::NotFound(p)) => assert_eq!(p, root.join("a/xxx")),
506 other => panic!("{:?}", other),
507 }
508 let (start, rest) = r.into_result();
509 assert_eq!(start, d.path("a").canonicalize().unwrap());
510 assert_eq!(rest.unwrap(), Path::new("xxx/yyy"));
511 }
512
513 #[test]
514 #[cfg(target_family = "unix")]
515 fn repeats() {
516 let d = testing::Dir::new();
517 let root = d.canonical_root();
518
519 // We're going to try a path with ..s in it, and make sure that we only
520 // get each given path once.
521 d.dir("a/b/c/d");
522 let mut r = ResolvePath::new(root.join("a/b/../b/../b/c/../c/d")).unwrap();
523 skip_past(&mut r, root);
524 let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
525 assert_eq!(
526 paths,
527 vec![
528 root.join("a"),
529 root.join("a/b"),
530 root.join("a/b/c"),
531 root.join("a/b/c/d"),
532 ]
533 );
534
535 // Now try a symlink to a higher directory, and make sure we only get
536 // each path once.
537 d.link_rel(LinkType::Dir, "../../", "a/b/c/rel_lnk");
538 let mut r = ResolvePath::new(root.join("a/b/c/rel_lnk/b/c/d")).unwrap();
539 skip_past(&mut r, root);
540 let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
541 assert_eq!(
542 paths,
543 vec![
544 root.join("a"),
545 root.join("a/b"),
546 root.join("a/b/c"),
547 root.join("a/b/c/rel_lnk"),
548 root.join("a/b/c/d"),
549 ]
550 );
551
552 // Once more, with an absolute symlink.
553 d.link_abs(LinkType::Dir, "a", "a/b/c/abs_lnk");
554 let mut r = ResolvePath::new(root.join("a/b/c/abs_lnk/b/c/d")).unwrap();
555 skip_past(&mut r, root);
556 let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
557 assert_eq!(
558 paths,
559 vec![
560 root.join("a"),
561 root.join("a/b"),
562 root.join("a/b/c"),
563 root.join("a/b/c/abs_lnk"),
564 root.join("a/b/c/d"),
565 ]
566 );
567
568 // One more, with multiple links.
569 let mut r = ResolvePath::new(root.join("a/b/c/abs_lnk/b/c/rel_lnk/b/c/d")).unwrap();
570 skip_past(&mut r, root);
571 let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
572 assert_eq!(
573 paths,
574 vec![
575 root.join("a"),
576 root.join("a/b"),
577 root.join("a/b/c"),
578 root.join("a/b/c/abs_lnk"),
579 root.join("a/b/c/rel_lnk"),
580 root.join("a/b/c/d"),
581 ]
582 );
583
584 // Last time, visiting the same links more than once.
585 let mut r =
586 ResolvePath::new(root.join("a/b/c/abs_lnk/b/c/rel_lnk/b/c/rel_lnk/b/c/abs_lnk/b/c/d"))
587 .unwrap();
588 skip_past(&mut r, root);
589 let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
590 assert_eq!(
591 paths,
592 vec![
593 root.join("a"),
594 root.join("a/b"),
595 root.join("a/b/c"),
596 root.join("a/b/c/abs_lnk"),
597 root.join("a/b/c/rel_lnk"),
598 root.join("a/b/c/d"),
599 ]
600 );
601 }
602
603 #[test]
604 #[cfg(target_family = "unix")]
605 fn looping() {
606 let d = testing::Dir::new();
607 let root = d.canonical_root();
608
609 d.dir("a/b/c");
610 // This file links to itself. We should hit our loop detector and barf.
611 d.link_rel(LinkType::File, "../../b/c/d", "a/b/c/d");
612 let mut r = ResolvePath::new(root.join("a/b/c/d")).unwrap();
613 skip_past(&mut r, root);
614 assert_eq!(r.next().unwrap().unwrap().0, root.join("a"));
615 assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b"));
616 assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c"));
617 assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c/d"));
618 assert!(matches!(
619 r.next().unwrap().unwrap_err(),
620 Error::StepsExceeded
621 ));
622 assert!(r.next().is_none());
623
624 // These directories link to each other.
625 d.link_rel(LinkType::Dir, "./f", "a/b/c/e");
626 d.link_rel(LinkType::Dir, "./e", "a/b/c/f");
627 let mut r = ResolvePath::new(root.join("a/b/c/e/413")).unwrap();
628 skip_past(&mut r, root);
629 assert_eq!(r.next().unwrap().unwrap().0, root.join("a"));
630 assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b"));
631 assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c"));
632 assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c/e"));
633 assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c/f"));
634 assert!(matches!(
635 r.next().unwrap().unwrap_err(),
636 Error::StepsExceeded
637 ));
638 assert!(r.next().is_none());
639 }
640
641 #[cfg(target_family = "unix")]
642 #[test]
643 fn unix_permissions() {
644 use std::os::unix::prelude::PermissionsExt;
645
646 let d = testing::Dir::new();
647 let root = d.canonical_root();
648 d.dir("a/b/c/d/e");
649 d.chmod("a", 0o751);
650 d.chmod("a/b", 0o711);
651 d.chmod("a/b/c", 0o715);
652 d.chmod("a/b/c/d", 0o000);
653
654 let mut r = ResolvePath::new(root.join("a/b/c/d/e/413")).unwrap();
655 skip_past(&mut r, root);
656 let resolvable: Vec<_> = (&mut r)
657 .take(4)
658 .map(|item| {
659 let (p, _, m) = item.unwrap();
660 (
661 p.strip_prefix(root).unwrap().to_string_lossy().into_owned(),
662 m.permissions().mode() & 0o777,
663 )
664 })
665 .collect();
666 let expected = vec![
667 ("a", 0o751),
668 ("a/b", 0o711),
669 ("a/b/c", 0o715),
670 ("a/b/c/d", 0o000),
671 ];
672 for ((p1, m1), (p2, m2)) in resolvable.iter().zip(expected.iter()) {
673 assert_eq!(p1, p2);
674 assert_eq!(m1, m2);
675 }
676
677 #[cfg(not(target_os = "android"))]
678 if pwd_grp::getuid() == 0 {
679 // We won't actually get a CouldNotInspect if we're running as root,
680 // since root can read directories that are mode 000.
681 return;
682 }
683
684 let err = r.next().unwrap();
685 assert!(matches!(err, Err(Error::CouldNotInspect(_, _))));
686
687 assert!(r.next().is_none());
688 }
689
690 #[test]
691 fn past_root() {
692 let d = testing::Dir::new();
693 let root = d.canonical_root();
694 d.dir("a/b");
695 d.chmod("a", 0o700);
696 d.chmod("a/b", 0o700);
697
698 let root_as_relative: PathBuf = root
699 .components()
700 .filter(|c| matches!(c, std::path::Component::Normal(_)))
701 .collect();
702 let n = root.components().count();
703 // Start with our the "root" directory of our Dir...
704 let mut inspect_path = root.to_path_buf();
705 // Then go way past the root of the filesystem
706 for _ in 0..n * 2 {
707 inspect_path.push("..");
708 }
709 // Then back down to the "root" directory of the dir..
710 inspect_path.push(root_as_relative);
711 // Then to a/b.
712 inspect_path.push("a/b");
713
714 let r = ResolvePath::new(inspect_path.clone()).unwrap();
715 let final_path = r.last().unwrap().unwrap().0;
716 assert_eq!(final_path, inspect_path.canonicalize().unwrap());
717 }
718}