tor_hsclient/connect.rs
1//! Main implementation of the connection functionality
2
3use std::time::Duration;
4
5use std::collections::HashMap;
6use std::fmt::Debug;
7use std::marker::PhantomData;
8use std::sync::Arc;
9use std::time::Instant;
10
11use async_trait::async_trait;
12use educe::Educe;
13use futures::{AsyncRead, AsyncWrite};
14use itertools::Itertools;
15use rand::Rng;
16use tor_bytes::Writeable;
17use tor_cell::relaycell::hs::intro_payload::{self, IntroduceHandshakePayload};
18use tor_cell::relaycell::hs::pow::ProofOfWork;
19use tor_cell::relaycell::msg::{AnyRelayMsg, Introduce1, Rendezvous2};
20use tor_circmgr::build::onion_circparams_from_netparams;
21use tor_error::{debug_report, warn_report, Bug};
22use tor_hscrypto::Subcredential;
23use tor_proto::circuit::handshake::hs_ntor;
24use tracing::{debug, trace};
25
26use retry_error::RetryError;
27use safelog::Sensitive;
28use tor_cell::relaycell::hs::{
29 AuthKeyType, EstablishRendezvous, IntroduceAck, RendezvousEstablished,
30};
31use tor_cell::relaycell::RelayMsg;
32use tor_checkable::{timed::TimerangeBound, Timebound};
33use tor_circmgr::hspool::{HsCircKind, HsCircPool};
34use tor_circmgr::timeouts::Action as TimeoutsAction;
35use tor_dirclient::request::Requestable as _;
36use tor_error::{internal, into_internal};
37use tor_error::{HasRetryTime as _, RetryTime};
38use tor_hscrypto::pk::{HsBlindId, HsId, HsIdKey};
39use tor_hscrypto::RendCookie;
40use tor_linkspec::{CircTarget, HasRelayIds, OwnedCircTarget, RelayId};
41use tor_llcrypto::pk::ed25519::Ed25519Identity;
42use tor_netdir::{NetDir, Relay};
43use tor_netdoc::doc::hsdesc::{HsDesc, IntroPointDesc};
44use tor_proto::circuit::{CircParameters, ClientCirc, MetaCellDisposition, MsgHandler};
45use tor_rtcompat::{Runtime, SleepProviderExt as _, TimeoutError};
46
47use crate::pow::HsPowClient;
48use crate::proto_oneshot;
49use crate::relay_info::ipt_to_circtarget;
50use crate::state::MockableConnectorData;
51use crate::Config;
52use crate::{rend_pt_identity_for_error, FailedAttemptError, IntroPtIndex, RendPtIdentityForError};
53use crate::{ConnError, DescriptorError, DescriptorErrorDetail};
54use crate::{HsClientConnector, HsClientSecretKeys};
55
56use ConnError as CE;
57use FailedAttemptError as FAE;
58
59/// Number of hops in our hsdir, introduction, and rendezvous circuits
60///
61/// Required by `tor_circmgr`'s timeout estimation API
62/// ([`tor_circmgr::CircMgr::estimate_timeout`], [`HsCircPool::estimate_timeout`]).
63///
64/// TODO HS hardcoding the number of hops to 3 seems wrong.
65/// This is really something that HsCircPool knows. And some setups might want to make
66/// shorter circuits for some reason. And it will become wrong with vanguards?
67/// But right now I think this is what HsCircPool does.
68//
69// Some commentary from
70// https://gitlab.torproject.org/tpo/core/arti/-/merge_requests/1342#note_2918050
71// Possibilities:
72// * Look at n_hops() on the circuits we get, if we don't need this estimate
73// till after we have the circuit.
74// * Add a function to HsCircPool to tell us what length of circuit to expect
75// for each given type of circuit.
76const HOPS: usize = 3;
77
78/// Given `R, M` where `M: MocksForConnect<M>`, expand to the mockable `ClientCirc`
79// This is quite annoying. But the alternative is to write out `<... as // ...>`
80// each time, since otherwise the compile complains about ambiguous associated types.
81macro_rules! ClientCirc { { $R:ty, $M:ty } => {
82 <<$M as MocksForConnect<$R>>::HsCircPool as MockableCircPool<$R>>::ClientCirc
83} }
84
85/// Information about a hidden service, including our connection history
86#[derive(Default, Educe)]
87#[educe(Debug)]
88// This type is actually crate-private, since it isn't re-exported, but it must
89// be `pub` because it appears as a default for a type parameter in HsClientConnector.
90pub struct Data {
91 /// The latest known onion service descriptor for this service.
92 desc: DataHsDesc,
93 /// Information about the latest status of trying to connect to this service
94 /// through each of its introduction points.
95 ipts: DataIpts,
96}
97
98/// Part of `Data` that relates to the HS descriptor
99type DataHsDesc = Option<TimerangeBound<HsDesc>>;
100
101/// Part of `Data` that relates to our information about introduction points
102type DataIpts = HashMap<RelayIdForExperience, IptExperience>;
103
104/// How things went last time we tried to use this introduction point
105///
106/// Neither this data structure, nor [`Data`], is responsible for arranging that we expire this
107/// information eventually. If we keep reconnecting to the service, we'll retain information
108/// about each IPT indefinitely, at least so long as they remain listed in the descriptors we
109/// receive.
110///
111/// Expiry of unused data is handled by `state.rs`, according to `last_used` in `ServiceState`.
112///
113/// Choosing which IPT to prefer is done by obtaining an `IptSortKey`
114/// (from this and other information).
115//
116// Don't impl Ord for IptExperience. We obtain `Option<&IptExperience>` from our
117// data structure, and if IptExperience were Ord then Option<&IptExperience> would be Ord
118// but it would be the wrong sort order: it would always prefer None, ie untried IPTs.
119#[derive(Debug)]
120struct IptExperience {
121 /// How long it took us to get whatever outcome occurred
122 ///
123 /// We prefer fast successes to slow ones.
124 /// Then, we prefer failures with earlier `RetryTime`,
125 /// and, lastly, faster failures to slower ones.
126 duration: Duration,
127
128 /// What happened and when we might try again
129 ///
130 /// Note that we don't actually *enforce* the `RetryTime` here, just sort by it
131 /// using `RetryTime::loose_cmp`.
132 ///
133 /// We *do* return an error that is itself `HasRetryTime` and expect our callers
134 /// to honour that.
135 outcome: Result<(), RetryTime>,
136}
137
138/// Actually make a HS connection, updating our recorded state as necessary
139///
140/// `connector` is provided only for obtaining the runtime and netdir (and `mock_for_state`).
141/// Obviously, `connect` is not supposed to go looking in `services`.
142///
143/// This function handles all necessary retrying of fallible operations,
144/// (and, therefore, must also limit the total work done for a particular call).
145///
146/// This function has a minimum of functionality, since it is the boundary
147/// between "mock connection, used for testing `state.rs`" and
148/// "mock circuit and netdir, used for testing `connect.rs`",
149/// so it is not, itself, unit-testable.
150pub(crate) async fn connect<R: Runtime>(
151 connector: &HsClientConnector<R>,
152 netdir: Arc<NetDir>,
153 config: Arc<Config>,
154 hsid: HsId,
155 data: &mut Data,
156 secret_keys: HsClientSecretKeys,
157) -> Result<Arc<ClientCirc>, ConnError> {
158 Context::new(
159 &connector.runtime,
160 &*connector.circpool,
161 netdir,
162 config,
163 hsid,
164 secret_keys,
165 (),
166 )?
167 .connect(data)
168 .await
169}
170
171/// Common context for a single request to connect to a hidden service
172///
173/// This saves on passing this same set of (immutable) values (or subsets thereof)
174/// to each method in the principal functional code, everywhere.
175/// It also provides a convenient type to be `Self`.
176///
177/// Its lifetime is one request to make a new client circuit to a hidden service,
178/// including all the retries and timeouts.
179struct Context<'c, R: Runtime, M: MocksForConnect<R>> {
180 /// Runtime
181 runtime: &'c R,
182 /// Circpool
183 circpool: &'c M::HsCircPool,
184 /// Netdir
185 //
186 // TODO holding onto the netdir for the duration of our attempts is not ideal
187 // but doing better is fairly complicated. See discussions here:
188 // https://gitlab.torproject.org/tpo/core/arti/-/merge_requests/1228#note_2910545
189 // https://gitlab.torproject.org/tpo/core/arti/-/issues/884
190 netdir: Arc<NetDir>,
191 /// Configuration
192 config: Arc<Config>,
193 /// Secret keys to use
194 secret_keys: HsClientSecretKeys,
195 /// HS ID
196 hsid: HsId,
197 /// Blinded HS ID
198 hs_blind_id: HsBlindId,
199 /// The subcredential to use during this time period
200 subcredential: Subcredential,
201 /// Mock data
202 mocks: M,
203}
204
205/// Details of an established rendezvous point
206///
207/// Intermediate value for progress during a connection attempt.
208struct Rendezvous<'r, R: Runtime, M: MocksForConnect<R>> {
209 /// RPT as a `Relay`
210 rend_relay: Relay<'r>,
211 /// Rendezvous circuit
212 rend_circ: Arc<ClientCirc!(R, M)>,
213 /// Rendezvous cookie
214 rend_cookie: RendCookie,
215
216 /// Receiver that will give us the RENDEZVOUS2 message.
217 ///
218 /// The sending ended is owned by the handler
219 /// which receives control messages on the rendezvous circuit,
220 /// and which was installed when we sent `ESTABLISH_RENDEZVOUS`.
221 ///
222 /// (`RENDEZVOUS2` is the message containing the onion service's side of the handshake.)
223 rend2_rx: proto_oneshot::Receiver<Rendezvous2>,
224
225 /// Dummy, to placate compiler
226 ///
227 /// Covariant without dropck or interfering with Send/Sync will do fine.
228 marker: PhantomData<fn() -> (R, M)>,
229}
230
231/// Random value used as part of IPT selection
232type IptSortRand = u32;
233
234/// Details of an apparently-useable introduction point
235///
236/// Intermediate value for progress during a connection attempt.
237struct UsableIntroPt<'i> {
238 /// Index in HS descriptor
239 intro_index: IntroPtIndex,
240 /// IPT descriptor
241 intro_desc: &'i IntroPointDesc,
242 /// IPT `CircTarget`
243 intro_target: OwnedCircTarget,
244 /// Random value used as part of IPT selection
245 sort_rand: IptSortRand,
246}
247
248/// Lookup key for looking up and recording our IPT use experiences
249///
250/// Used to identify a relay when looking to see what happened last time we used it,
251/// and storing that information after we tried it.
252///
253/// We store the experience information under an arbitrary one of the relay's identities,
254/// as returned by the `HasRelayIds::identities().next()`.
255/// When we do lookups, we check all the relay's identities to see if we find
256/// anything relevant.
257/// If relay identities permute in strange ways, whether we find our previous
258/// knowledge about them is not particularly well defined, but that's fine.
259///
260/// While this is, structurally, a relay identity, it is not suitable for other purposes.
261#[derive(Hash, Eq, PartialEq, Ord, PartialOrd, Debug)]
262struct RelayIdForExperience(RelayId);
263
264/// Details of an apparently-successful INTRODUCE exchange
265///
266/// Intermediate value for progress during a connection attempt.
267struct Introduced<R: Runtime, M: MocksForConnect<R>> {
268 /// End-to-end crypto NTORv3 handshake with the service
269 ///
270 /// Created as part of generating our `INTRODUCE1`,
271 /// and then used when processing `RENDEZVOUS2`.
272 handshake_state: hs_ntor::HsNtorClientState,
273
274 /// Dummy, to placate compiler
275 ///
276 /// `R` and `M` only used for getting to mocks.
277 /// Covariant without dropck or interfering with Send/Sync will do fine.
278 marker: PhantomData<fn() -> (R, M)>,
279}
280
281impl RelayIdForExperience {
282 /// Identities to use to try to find previous experience information about this IPT
283 fn for_lookup(intro_target: &OwnedCircTarget) -> impl Iterator<Item = Self> + '_ {
284 intro_target
285 .identities()
286 .map(|id| RelayIdForExperience(id.to_owned()))
287 }
288
289 /// Identity to use to store previous experience information about this IPT
290 fn for_store(intro_target: &OwnedCircTarget) -> Result<Self, Bug> {
291 let id = intro_target
292 .identities()
293 .next()
294 .ok_or_else(|| internal!("introduction point relay with no identities"))?
295 .to_owned();
296 Ok(RelayIdForExperience(id))
297 }
298}
299
300/// Sort key for an introduction point, for selecting the best IPTs to try first
301///
302/// Ordering is most preferable first.
303///
304/// We use this to sort our `UsableIpt`s using `.sort_by_key`.
305/// (This implementation approach ensures that we obey all the usual ordering invariants.)
306#[derive(Ord, PartialOrd, Eq, PartialEq, Debug)]
307struct IptSortKey {
308 /// Sort by how preferable the experience was
309 outcome: IptSortKeyOutcome,
310 /// Failing that, choose randomly
311 sort_rand: IptSortRand,
312}
313
314/// Component of the [`IptSortKey`] representing outcome of our last attempt, if any
315///
316/// This is the main thing we use to decide which IPTs to try first.
317/// It is calculated for each IPT
318/// (via `.sort_by_key`, so repeatedly - it should therefore be cheap to make.)
319///
320/// Ordering is most preferable first.
321#[derive(Ord, PartialOrd, Eq, PartialEq, Debug)]
322enum IptSortKeyOutcome {
323 /// Prefer successes
324 Success {
325 /// Prefer quick ones
326 duration: Duration,
327 },
328 /// Failing that, try one we don't know to have failed
329 Untried,
330 /// Failing that, it'll have to be ones that didn't work last time
331 Failed {
332 /// Prefer failures with an earlier retry time
333 retry_time: tor_error::LooseCmpRetryTime,
334 /// Failing that, prefer quick failures (rather than slow ones eg timeouts)
335 duration: Duration,
336 },
337}
338
339impl From<Option<&IptExperience>> for IptSortKeyOutcome {
340 fn from(experience: Option<&IptExperience>) -> IptSortKeyOutcome {
341 use IptSortKeyOutcome as O;
342 match experience {
343 None => O::Untried,
344 Some(IptExperience { duration, outcome }) => match outcome {
345 Ok(()) => O::Success {
346 duration: *duration,
347 },
348 Err(retry_time) => O::Failed {
349 retry_time: (*retry_time).into(),
350 duration: *duration,
351 },
352 },
353 }
354 }
355}
356
357impl<'c, R: Runtime, M: MocksForConnect<R>> Context<'c, R, M> {
358 /// Make a new `Context` from the input data
359 fn new(
360 runtime: &'c R,
361 circpool: &'c M::HsCircPool,
362 netdir: Arc<NetDir>,
363 config: Arc<Config>,
364 hsid: HsId,
365 secret_keys: HsClientSecretKeys,
366 mocks: M,
367 ) -> Result<Self, ConnError> {
368 let time_period = netdir.hs_time_period();
369 let (hs_blind_id_key, subcredential) = HsIdKey::try_from(hsid)
370 .map_err(|_| CE::InvalidHsId)?
371 .compute_blinded_key(time_period)
372 .map_err(
373 // TODO HS what on earth do these errors mean, in practical terms ?
374 // In particular, we'll want to convert them to a ConnError variant,
375 // but what ErrorKind should they have ?
376 into_internal!("key blinding error, don't know how to handle"),
377 )?;
378 let hs_blind_id = hs_blind_id_key.id();
379
380 Ok(Context {
381 netdir,
382 config,
383 hsid,
384 hs_blind_id,
385 subcredential,
386 circpool,
387 runtime,
388 secret_keys,
389 mocks,
390 })
391 }
392
393 /// Actually make a HS connection, updating our recorded state as necessary
394 ///
395 /// Called by the `connect` function in this module.
396 ///
397 /// This function handles all necessary retrying of fallible operations,
398 /// (and, therefore, must also limit the total work done for a particular call).
399 async fn connect(&self, data: &mut Data) -> Result<Arc<ClientCirc!(R, M)>, ConnError> {
400 // This function must do the following, retrying as appropriate.
401 // - Look up the onion descriptor in the state.
402 // - Download the onion descriptor if one isn't there.
403 // - In parallel:
404 // - Pick a rendezvous point from the netdirprovider and launch a
405 // rendezvous circuit to it. Then send ESTABLISH_INTRO.
406 // - Pick a number of introduction points (1 or more) and try to
407 // launch circuits to them.
408 // - On a circuit to an introduction point, send an INTRODUCE1 cell.
409 // - Wait for a RENDEZVOUS2 cell on the rendezvous circuit
410 // - Add a virtual hop to the rendezvous circuit.
411 // - Return the rendezvous circuit.
412
413 let mocks = self.mocks.clone();
414
415 let desc = self.descriptor_ensure(&mut data.desc).await?;
416
417 mocks.test_got_desc(desc);
418
419 let circ = self.intro_rend_connect(desc, &mut data.ipts).await?;
420 mocks.test_got_circ(&circ);
421
422 Ok(circ)
423 }
424
425 /// Ensure that `Data.desc` contains the HS descriptor
426 ///
427 /// If we have a previously-downloaded descriptor, which is still valid,
428 /// just returns a reference to it.
429 ///
430 /// Otherwise, tries to obtain the descriptor by downloading it from hsdir(s).
431 ///
432 /// Does all necessary retries and timeouts.
433 /// Returns an error if no valid descriptor could be found.
434 #[allow(clippy::cognitive_complexity)] // TODO: Refactor
435 async fn descriptor_ensure<'d>(&self, data: &'d mut DataHsDesc) -> Result<&'d HsDesc, CE> {
436 // Maximum number of hsdir connection and retrieval attempts we'll make
437 let max_total_attempts = self
438 .config
439 .retry
440 .hs_desc_fetch_attempts()
441 .try_into()
442 // User specified a very large u32. We must be downcasting it to 16bit!
443 // let's give them as many retries as we can manage.
444 .unwrap_or(usize::MAX);
445
446 // Limit on the duration of each retrieval attempt
447 let each_timeout = self.estimate_timeout(&[
448 (1, TimeoutsAction::BuildCircuit { length: HOPS }), // build circuit
449 (1, TimeoutsAction::RoundTrip { length: HOPS }), // One HTTP query/response
450 ]);
451
452 // We retain a previously obtained descriptor precisely until its lifetime expires,
453 // and pay no attention to the descriptor's revision counter.
454 // When it expires, we discard it completely and try to obtain a new one.
455 // https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914448
456 // TODO SPEC: Discuss HS descriptor lifetime and expiry client behaviour
457 if let Some(previously) = data {
458 let now = self.runtime.wallclock();
459 if let Ok(_desc) = previously.as_ref().check_valid_at(&now) {
460 // Ideally we would just return desc but that confuses borrowck.
461 // https://github.com/rust-lang/rust/issues/51545
462 return Ok(data
463 .as_ref()
464 .expect("Some but now None")
465 .as_ref()
466 .check_valid_at(&now)
467 .expect("Ok but now Err"));
468 }
469 // Seems to be not valid now. Try to fetch a fresh one.
470 }
471
472 let hs_dirs = self.netdir.hs_dirs_download(
473 self.hs_blind_id,
474 self.netdir.hs_time_period(),
475 &mut self.mocks.thread_rng(),
476 )?;
477
478 trace!(
479 "HS desc fetch for {}, using {} hsdirs",
480 &self.hsid,
481 hs_dirs.len()
482 );
483
484 // We might consider launching requests to multiple HsDirs in parallel.
485 // https://gitlab.torproject.org/tpo/core/arti/-/merge_requests/1118#note_2894463
486 // But C Tor doesn't and our HS experts don't consider that important:
487 // https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914436
488 // (Additionally, making multiple HSDir requests at once may make us
489 // more vulnerable to traffic analysis.)
490 let mut attempts = hs_dirs.iter().cycle().take(max_total_attempts);
491 let mut errors = RetryError::in_attempt_to("retrieve hidden service descriptor");
492 let desc = loop {
493 let relay = match attempts.next() {
494 Some(relay) => relay,
495 None => {
496 return Err(if errors.is_empty() {
497 CE::NoHsDirs
498 } else {
499 CE::DescriptorDownload(errors)
500 })
501 }
502 };
503 let hsdir_for_error: Sensitive<Ed25519Identity> = (*relay.id()).into();
504 match self
505 .runtime
506 .timeout(each_timeout, self.descriptor_fetch_attempt(relay))
507 .await
508 .unwrap_or(Err(DescriptorErrorDetail::Timeout))
509 {
510 Ok(desc) => break desc,
511 Err(error) => {
512 debug_report!(
513 &error,
514 "failed hsdir desc fetch for {} from {}/{}",
515 &self.hsid,
516 &relay.id(),
517 &relay.rsa_id()
518 );
519 errors.push(tor_error::Report(DescriptorError {
520 hsdir: hsdir_for_error,
521 error,
522 }));
523 }
524 }
525 };
526
527 // Store the bounded value in the cache for reuse,
528 // but return a reference to the unwrapped `HsDesc`.
529 //
530 // The `HsDesc` must be owned by `data.desc`,
531 // so first add it to `data.desc`,
532 // and then dangerously_assume_timely to get a reference out again.
533 //
534 // It is safe to dangerously_assume_timely,
535 // as descriptor_fetch_attempt has already checked the timeliness of the descriptor.
536 let ret = data.insert(desc);
537 Ok(ret.as_ref().dangerously_assume_timely())
538 }
539
540 /// Make one attempt to fetch the descriptor from a specific hsdir
541 ///
542 /// No timeout
543 ///
544 /// On success, returns the descriptor.
545 ///
546 /// While the returned descriptor is `TimerangeBound`, its validity at the current time *has*
547 /// been checked.
548 async fn descriptor_fetch_attempt(
549 &self,
550 hsdir: &Relay<'_>,
551 ) -> Result<TimerangeBound<HsDesc>, DescriptorErrorDetail> {
552 let max_len: usize = self
553 .netdir
554 .params()
555 .hsdir_max_desc_size
556 .get()
557 .try_into()
558 .map_err(into_internal!("BoundedInt was not truly bounded!"))?;
559 let request = {
560 let mut r = tor_dirclient::request::HsDescDownloadRequest::new(self.hs_blind_id);
561 r.set_max_len(max_len);
562 r
563 };
564 trace!(
565 "hsdir for {}, trying {}/{}, request {:?} (http request {:?})",
566 &self.hsid,
567 &hsdir.id(),
568 &hsdir.rsa_id(),
569 &request,
570 request.debug_request()
571 );
572
573 let circuit = self
574 .circpool
575 .m_get_or_launch_specific(
576 &self.netdir,
577 HsCircKind::ClientHsDir,
578 OwnedCircTarget::from_circ_target(hsdir),
579 )
580 .await?;
581 let mut stream = circuit
582 .m_begin_dir_stream()
583 .await
584 .map_err(DescriptorErrorDetail::Stream)?;
585
586 let response = tor_dirclient::send_request(self.runtime, &request, &mut stream, None)
587 .await
588 .map_err(|dir_error| match dir_error {
589 tor_dirclient::Error::RequestFailed(rfe) => DescriptorErrorDetail::from(rfe.error),
590 tor_dirclient::Error::CircMgr(ce) => into_internal!(
591 "tor-dirclient complains about circmgr going wrong but we gave it a stream"
592 )(ce)
593 .into(),
594 other => into_internal!(
595 "tor-dirclient gave unexpected error, tor-hsclient code needs updating"
596 )(other)
597 .into(),
598 })?;
599
600 let desc_text = response.into_output_string().map_err(|rfe| rfe.error)?;
601 let hsc_desc_enc = self.secret_keys.keys.ks_hsc_desc_enc.as_ref();
602
603 let now = self.runtime.wallclock();
604
605 HsDesc::parse_decrypt_validate(
606 &desc_text,
607 &self.hs_blind_id,
608 now,
609 &self.subcredential,
610 hsc_desc_enc,
611 )
612 .map_err(DescriptorErrorDetail::from)
613 }
614
615 /// Given the descriptor, try to connect to service
616 ///
617 /// Does all necessary retries, timeouts, etc.
618 async fn intro_rend_connect(
619 &self,
620 desc: &HsDesc,
621 data: &mut DataIpts,
622 ) -> Result<Arc<ClientCirc!(R, M)>, CE> {
623 // Maximum number of rendezvous/introduction attempts we'll make
624 let max_total_attempts = self
625 .config
626 .retry
627 .hs_intro_rend_attempts()
628 .try_into()
629 // User specified a very large u32. We must be downcasting it to 16bit!
630 // let's give them as many retries as we can manage.
631 .unwrap_or(usize::MAX);
632
633 // Limit on the duration of each attempt to establish a rendezvous point
634 //
635 // This *might* include establishing a fresh circuit,
636 // if the HsCircPool's pool is empty.
637 let rend_timeout = self.estimate_timeout(&[
638 (1, TimeoutsAction::BuildCircuit { length: HOPS }), // build circuit
639 (1, TimeoutsAction::RoundTrip { length: HOPS }), // One ESTABLISH_RENDEZVOUS
640 ]);
641
642 // Limit on the duration of each attempt to negotiate with an introduction point
643 //
644 // *Does* include establishing the circuit.
645 let intro_timeout = self.estimate_timeout(&[
646 (1, TimeoutsAction::BuildCircuit { length: HOPS }), // build circuit
647 // This does some crypto too, but we don't account for that.
648 (1, TimeoutsAction::RoundTrip { length: HOPS }), // One INTRODUCE1/INTRODUCE_ACK
649 ]);
650
651 // Timeout estimator for the action that the HS will take in building
652 // its circuit to the RPT.
653 let hs_build_action = TimeoutsAction::BuildCircuit {
654 length: if desc.is_single_onion_service() {
655 1
656 } else {
657 HOPS
658 },
659 };
660 // Limit on the duration of each attempt for activities involving both
661 // RPT and IPT.
662 let rpt_ipt_timeout = self.estimate_timeout(&[
663 // The API requires us to specify a number of circuit builds and round trips.
664 // So what we tell the estimator is a rather imprecise description.
665 // (TODO it would be nice if the circmgr offered us a one-way trip Action).
666 //
667 // What we are timing here is:
668 //
669 // INTRODUCE2 goes from IPT to HS
670 // but that happens in parallel with us waiting for INTRODUCE_ACK,
671 // which is controlled by `intro_timeout` so not pat of `ipt_rpt_timeout`.
672 // and which has to come HOPS hops. So don't count INTRODUCE2 here.
673 //
674 // HS builds to our RPT
675 (1, hs_build_action),
676 //
677 // RENDEZVOUS1 goes from HS to RPT. `hs_hops`, one-way.
678 // RENDEZVOUS2 goes from RPT to us. HOPS, one-way.
679 // Together, we squint a bit and call this a HOPS round trip:
680 (1, TimeoutsAction::RoundTrip { length: HOPS }),
681 ]);
682
683 // We can't reliably distinguish IPT failure from RPT failure, so we iterate over IPTs
684 // (best first) and each time use a random RPT.
685
686 // We limit the number of rendezvous establishment attempts, separately, since we don't
687 // try to talk to the intro pt until we've established the rendezvous circuit.
688 let mut rend_attempts = 0..max_total_attempts;
689
690 // But, we put all the errors into the same bucket, since we might have a mixture.
691 let mut errors = RetryError::in_attempt_to("make circuit to to hidden service");
692
693 // Note that IntroPtIndex is *not* the index into this Vec.
694 // It is the index into the original list of introduction points in the descriptor.
695 let mut usable_intros: Vec<UsableIntroPt> = desc
696 .intro_points()
697 .iter()
698 .enumerate()
699 .map(|(intro_index, intro_desc)| {
700 let intro_index = intro_index.into();
701 let intro_target = ipt_to_circtarget(intro_desc, &self.netdir)
702 .map_err(|error| FAE::UnusableIntro { error, intro_index })?;
703 // Lack of TAIT means this clone
704 let intro_target = OwnedCircTarget::from_circ_target(&intro_target);
705 Ok::<_, FailedAttemptError>(UsableIntroPt {
706 intro_index,
707 intro_desc,
708 intro_target,
709 sort_rand: self.mocks.thread_rng().random(),
710 })
711 })
712 .filter_map(|entry| match entry {
713 Ok(y) => Some(y),
714 Err(e) => {
715 errors.push(e);
716 None
717 }
718 })
719 .collect_vec();
720
721 // Delete experience information for now-unlisted intro points
722 // Otherwise, as the IPTs change `Data` might grow without bound,
723 // if we keep reconnecting to the same HS.
724 data.retain(|k, _v| {
725 usable_intros
726 .iter()
727 .any(|ipt| RelayIdForExperience::for_lookup(&ipt.intro_target).any(|id| &id == k))
728 });
729
730 // Join with existing state recording our experiences,
731 // sort by descending goodness, and then randomly
732 // (so clients without any experience don't all pile onto the same, first, IPT)
733 usable_intros.sort_by_key(|ipt: &UsableIntroPt| {
734 let experience =
735 RelayIdForExperience::for_lookup(&ipt.intro_target).find_map(|id| data.get(&id));
736 IptSortKey {
737 outcome: experience.into(),
738 sort_rand: ipt.sort_rand,
739 }
740 });
741 self.mocks.test_got_ipts(&usable_intros);
742
743 let mut intro_attempts = usable_intros.iter().cycle().take(max_total_attempts);
744
745 // We retain a rendezvous we managed to set up in here. That way if we created it, and
746 // then failed before we actually needed it, we can reuse it.
747 // If we exit with an error, we will waste it - but because we isolate things we do
748 // for different services, it wouldn't be reusable anyway.
749 let mut saved_rendezvous = None;
750
751 // If we are using proof-of-work DoS mitigation, this chooses an
752 // algorithm and initial effort, and adjusts that effort when we retry.
753 let mut pow_client = HsPowClient::new(&self.hs_blind_id, desc);
754
755 // We might consider making multiple INTRODUCE attempts to different
756 // IPTs in in parallel, and somehow aggregating the errors and
757 // experiences.
758 // However our HS experts don't consider that important:
759 // https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914438
760 // Parallelizing our HsCircPool circuit building would likely have
761 // greater impact. (See #1149.)
762 loop {
763 // When did we start doing things that depended on the IPT?
764 //
765 // Used for recording our experience with the selected IPT
766 let mut ipt_use_started = None::<Instant>;
767
768 // Error handling inner async block (analogous to an IEFE):
769 // * Ok(Some()) means this attempt succeeded
770 // * Ok(None) means all attempts exhausted
771 // * Err(error) means this attempt failed
772 //
773 // Error handling is rather complex here. It's the primary job of *this* code to
774 // make sure that it's done right for timeouts. (The individual component
775 // functions handle non-timeout errors.) The different timeout errors have
776 // different amounts of information about the identity of the RPT and IPT: in each
777 // case, the error only mentions the RPT or IPT if that node is implicated in the
778 // timeout.
779 let outcome = async {
780 // We establish a rendezvous point first. Although it appears from reading
781 // this code that this means we serialise establishment of the rendezvous and
782 // introduction circuits, this isn't actually the case. The circmgr maintains
783 // a pool of circuits. What actually happens in the "standing start" case is
784 // that we obtain a circuit for rendezvous from the circmgr's pool, expecting
785 // one to be available immediately; the circmgr will then start to build a new
786 // one to replenish its pool, and that happens in parallel with the work we do
787 // here - but in arrears. If the circmgr pool is empty, then we must wait.
788 //
789 // Perhaps this should be parallelised here. But that's really what the pool
790 // is for, since we expect building the rendezvous circuit and building the
791 // introduction circuit to take about the same length of time.
792 //
793 // We *do* serialise the ESTABLISH_RENDEZVOUS exchange, with the
794 // building of the introduction circuit. That could be improved, at the cost
795 // of some additional complexity here.
796 //
797 // Our HS experts don't consider it important to increase the parallelism:
798 // https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914444
799 // https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914445
800 if saved_rendezvous.is_none() {
801 debug!("hs conn to {}: setting up rendezvous point", &self.hsid);
802 // Establish a rendezvous circuit.
803 let Some(_): Option<usize> = rend_attempts.next() else {
804 return Ok(None);
805 };
806
807 let mut using_rend_pt = None;
808 saved_rendezvous = Some(
809 self.runtime
810 .timeout(rend_timeout, self.establish_rendezvous(&mut using_rend_pt))
811 .await
812 .map_err(|_: TimeoutError| match using_rend_pt {
813 None => FAE::RendezvousCircuitObtain {
814 error: tor_circmgr::Error::CircTimeout(None),
815 },
816 Some(rend_pt) => FAE::RendezvousEstablishTimeout { rend_pt },
817 })??,
818 );
819 }
820
821 let Some(ipt) = intro_attempts.next() else {
822 return Ok(None);
823 };
824 let intro_index = ipt.intro_index;
825
826 let proof_of_work = match pow_client.solve().await {
827 Ok(solution) => solution,
828 Err(e) => {
829 debug!(
830 "failing to compute proof-of-work, trying without. ({:?})",
831 e
832 );
833 None
834 }
835 };
836
837 // We record how long things take, starting from here, as
838 // as a statistic we'll use for the IPT in future.
839 // This is stored in a variable outside this async block,
840 // so that the outcome handling can use it.
841 ipt_use_started = Some(self.runtime.now());
842
843 // No `Option::get_or_try_insert_with`, or we'd avoid this expect()
844 let rend_pt_for_error = rend_pt_identity_for_error(
845 &saved_rendezvous
846 .as_ref()
847 .expect("just made Some")
848 .rend_relay,
849 );
850 debug!(
851 "hs conn to {}: RPT {}",
852 &self.hsid,
853 rend_pt_for_error.as_inner()
854 );
855
856 let (rendezvous, introduced) = self
857 .runtime
858 .timeout(
859 intro_timeout,
860 self.exchange_introduce(ipt, &mut saved_rendezvous,
861 proof_of_work),
862 )
863 .await
864 .map_err(|_: TimeoutError| {
865 // The intro point ought to give us a prompt ACK regardless of HS
866 // behaviour or whatever is happening at the RPT, so blame the IPT.
867 FAE::IntroductionTimeout { intro_index }
868 })?
869 // TODO: Maybe try, once, to extend-and-reuse the intro circuit.
870 //
871 // If the introduction fails, the introduction circuit is in principle
872 // still usable. We believe that in this case, C Tor extends the intro
873 // circuit by one hop to the next IPT to try. That saves on building a
874 // whole new 3-hop intro circuit. However, our HS experts tell us that
875 // if introduction fails at one IPT it is likely to fail at the others too,
876 // so that optimisation might reduce our network impact and time to failure,
877 // but isn't likely to improve our chances of success.
878 //
879 // However, it's not clear whether this approach risks contaminating
880 // the 2nd attempt with some fault relating to the introduction point.
881 // The 1st ipt might also gain more knowledge about which HS we're talking to.
882 //
883 // TODO SPEC: Discuss extend-and-reuse HS intro circuit after nack
884 ?;
885 #[allow(unused_variables)] // it's *supposed* to be unused
886 let saved_rendezvous = (); // don't use `saved_rendezvous` any more, use rendezvous
887
888 let rend_pt = rend_pt_identity_for_error(&rendezvous.rend_relay);
889 let circ = self
890 .runtime
891 .timeout(
892 rpt_ipt_timeout,
893 self.complete_rendezvous(ipt, rendezvous, introduced),
894 )
895 .await
896 .map_err(|_: TimeoutError| FAE::RendezvousCompletionTimeout {
897 intro_index,
898 rend_pt: rend_pt.clone(),
899 })??;
900
901 debug!(
902 "hs conn to {}: RPT {} IPT {}: success",
903 &self.hsid,
904 rend_pt.as_inner(),
905 intro_index,
906 );
907 Ok::<_, FAE>(Some((intro_index, circ)))
908 }
909 .await;
910
911 // Store the experience `outcome` we had with IPT `intro_index`, in `data`
912 #[allow(clippy::unused_unit)] // -> () is here for error handling clarity
913 let mut store_experience = |intro_index, outcome| -> () {
914 (|| {
915 let ipt = usable_intros
916 .iter()
917 .find(|ipt| ipt.intro_index == intro_index)
918 .ok_or_else(|| internal!("IPT not found by index"))?;
919 let id = RelayIdForExperience::for_store(&ipt.intro_target)?;
920 let started = ipt_use_started.ok_or_else(|| {
921 internal!("trying to record IPT use but no IPT start time noted")
922 })?;
923 let duration = self
924 .runtime
925 .now()
926 .checked_duration_since(started)
927 .ok_or_else(|| internal!("clock overflow calculating IPT use duration"))?;
928 data.insert(id, IptExperience { duration, outcome });
929 Ok::<_, Bug>(())
930 })()
931 .unwrap_or_else(|e| warn_report!(e, "error recording HS IPT use experience"));
932 };
933
934 match outcome {
935 Ok(Some((intro_index, y))) => {
936 // Record successful outcome in Data
937 store_experience(intro_index, Ok(()));
938 return Ok(y);
939 }
940 Ok(None) => return Err(CE::Failed(errors)),
941 Err(error) => {
942 debug_report!(&error, "hs conn to {}: attempt failed", &self.hsid);
943 // Record error outcome in Data, if in fact we involved the IPT
944 // at all. The IPT information is be retrieved from `error`,
945 // since only some of the errors implicate the introduction point.
946 if let Some(intro_index) = error.intro_index() {
947 store_experience(intro_index, Err(error.retry_time()));
948 }
949 errors.push(error);
950
951 // If we are using proof-of-work DoS mitigation, try harder next time
952 pow_client.increase_effort();
953 }
954 }
955 }
956 }
957
958 /// Make one attempt to establish a rendezvous circuit
959 ///
960 /// This doesn't really depend on anything,
961 /// other than (obviously) the isolation implied by our circuit pool.
962 /// In particular it doesn't depend on the introduction point.
963 ///
964 /// Does not apply a timeout.
965 ///
966 /// On entry `using_rend_pt` is `None`.
967 /// This function will store `Some` when it finds out which relay
968 /// it is talking to and starts to converse with it.
969 /// That way, if a timeout occurs, the caller can add that information to the error.
970 async fn establish_rendezvous(
971 &'c self,
972 using_rend_pt: &mut Option<RendPtIdentityForError>,
973 ) -> Result<Rendezvous<'c, R, M>, FAE> {
974 let (rend_circ, rend_relay) = self
975 .circpool
976 .m_get_or_launch_client_rend(&self.netdir)
977 .await
978 .map_err(|error| FAE::RendezvousCircuitObtain { error })?;
979
980 let rend_pt = rend_pt_identity_for_error(&rend_relay);
981 *using_rend_pt = Some(rend_pt.clone());
982
983 let rend_cookie: RendCookie = self.mocks.thread_rng().random();
984 let message = EstablishRendezvous::new(rend_cookie);
985
986 let (rend_established_tx, rend_established_rx) = proto_oneshot::channel();
987 let (rend2_tx, rend2_rx) = proto_oneshot::channel();
988
989 /// Handler which expects `RENDEZVOUS_ESTABLISHED` and then
990 /// `RENDEZVOUS2`. Returns each message via the corresponding `oneshot`.
991 struct Handler {
992 /// Sender for a RENDEZVOUS_ESTABLISHED message.
993 rend_established_tx: proto_oneshot::Sender<RendezvousEstablished>,
994 /// Sender for a RENDEZVOUS2 message.
995 rend2_tx: proto_oneshot::Sender<Rendezvous2>,
996 }
997 impl MsgHandler for Handler {
998 fn handle_msg(
999 &mut self,
1000 msg: AnyRelayMsg,
1001 ) -> Result<MetaCellDisposition, tor_proto::Error> {
1002 // The first message we expect is a RENDEZVOUS_ESTABALISHED.
1003 if self.rend_established_tx.still_expected() {
1004 self.rend_established_tx
1005 .deliver_expected_message(msg, MetaCellDisposition::Consumed)
1006 } else {
1007 self.rend2_tx
1008 .deliver_expected_message(msg, MetaCellDisposition::ConversationFinished)
1009 }
1010 }
1011 }
1012
1013 debug!(
1014 "hs conn to {}: RPT {}: sending ESTABLISH_RENDEZVOUS",
1015 &self.hsid,
1016 rend_pt.as_inner(),
1017 );
1018
1019 let handle_proto_error = |error| FAE::RendezvousEstablish {
1020 error,
1021 rend_pt: rend_pt.clone(),
1022 };
1023 let handler = Handler {
1024 rend_established_tx,
1025 rend2_tx,
1026 };
1027
1028 rend_circ
1029 .m_start_conversation_last_hop(Some(message.into()), handler)
1030 .await
1031 .map_err(handle_proto_error)?;
1032
1033 // `start_conversation` returns as soon as the control message has been sent.
1034 // We need to obtain the RENDEZVOUS_ESTABLISHED message, which is "returned" via the oneshot.
1035 let _: RendezvousEstablished = rend_established_rx.recv(handle_proto_error).await?;
1036
1037 debug!(
1038 "hs conn to {}: RPT {}: got RENDEZVOUS_ESTABLISHED",
1039 &self.hsid,
1040 rend_pt.as_inner(),
1041 );
1042
1043 Ok(Rendezvous {
1044 rend_circ,
1045 rend_cookie,
1046 rend_relay,
1047 rend2_rx,
1048 marker: PhantomData,
1049 })
1050 }
1051
1052 /// Attempt (once) to send an INTRODUCE1 and wait for the INTRODUCE_ACK
1053 ///
1054 /// `take`s the input `rendezvous` (but only takes it if it gets that far)
1055 /// and, if successful, returns it.
1056 /// (This arranges that the rendezvous is "used up" precisely if
1057 /// we sent its secret somewhere.)
1058 ///
1059 /// Although this function handles the `Rendezvous`,
1060 /// nothing in it actually involves the rendezvous point.
1061 /// So if there's a failure, it's purely to do with the introduction point.
1062 ///
1063 /// Does not apply a timeout.
1064 #[allow(clippy::cognitive_complexity)] // TODO: Refactor
1065 async fn exchange_introduce(
1066 &'c self,
1067 ipt: &UsableIntroPt<'_>,
1068 rendezvous: &mut Option<Rendezvous<'c, R, M>>,
1069 proof_of_work: Option<ProofOfWork>,
1070 ) -> Result<(Rendezvous<'c, R, M>, Introduced<R, M>), FAE> {
1071 let intro_index = ipt.intro_index;
1072
1073 debug!(
1074 "hs conn to {}: IPT {}: obtaining intro circuit",
1075 &self.hsid, intro_index,
1076 );
1077
1078 let intro_circ = self
1079 .circpool
1080 .m_get_or_launch_specific(
1081 &self.netdir,
1082 HsCircKind::ClientIntro,
1083 ipt.intro_target.clone(), // &OwnedCircTarget isn't CircTarget apparently
1084 )
1085 .await
1086 .map_err(|error| FAE::IntroductionCircuitObtain { error, intro_index })?;
1087
1088 let rendezvous = rendezvous.take().ok_or_else(|| internal!("no rend"))?;
1089
1090 let rend_pt = rend_pt_identity_for_error(&rendezvous.rend_relay);
1091
1092 debug!(
1093 "hs conn to {}: RPT {} IPT {}: making introduction",
1094 &self.hsid,
1095 rend_pt.as_inner(),
1096 intro_index,
1097 );
1098
1099 // Now we construct an introduce1 message and perform the first part of the
1100 // rendezvous handshake.
1101 //
1102 // This process is tricky because the header of the INTRODUCE1 message
1103 // -- which depends on the IntroPt configuration -- is authenticated as
1104 // part of the HsDesc handshake.
1105
1106 // Construct the header, since we need it as input to our encryption.
1107 let intro_header = {
1108 let ipt_sid_key = ipt.intro_desc.ipt_sid_key();
1109 let intro1 = Introduce1::new(
1110 AuthKeyType::ED25519_SHA3_256,
1111 ipt_sid_key.as_bytes().to_vec(),
1112 vec![],
1113 );
1114 let mut header = vec![];
1115 intro1
1116 .encode_onto(&mut header)
1117 .map_err(into_internal!("couldn't encode intro1 header"))?;
1118 header
1119 };
1120
1121 // Construct the introduce payload, which tells the onion service how to find
1122 // our rendezvous point. (We could do this earlier if we wanted.)
1123 let intro_payload = {
1124 let onion_key =
1125 intro_payload::OnionKey::NtorOnionKey(*rendezvous.rend_relay.ntor_onion_key());
1126 let linkspecs = rendezvous
1127 .rend_relay
1128 .linkspecs()
1129 .map_err(into_internal!("Couldn't encode link specifiers"))?;
1130 let payload = IntroduceHandshakePayload::new(
1131 rendezvous.rend_cookie,
1132 onion_key,
1133 linkspecs,
1134 proof_of_work,
1135 );
1136 let mut encoded = vec![];
1137 payload
1138 .write_onto(&mut encoded)
1139 .map_err(into_internal!("Couldn't encode introduce1 payload"))?;
1140 encoded
1141 };
1142
1143 // Perform the cryptographic handshake with the onion service.
1144 let service_info = hs_ntor::HsNtorServiceInfo::new(
1145 ipt.intro_desc.svc_ntor_key().clone(),
1146 ipt.intro_desc.ipt_sid_key().clone(),
1147 self.subcredential,
1148 );
1149 let handshake_state =
1150 hs_ntor::HsNtorClientState::new(&mut self.mocks.thread_rng(), service_info);
1151 let encrypted_body = handshake_state
1152 .client_send_intro(&intro_header, &intro_payload)
1153 .map_err(into_internal!("can't begin hs-ntor handshake"))?;
1154
1155 // Build our actual INTRODUCE1 message.
1156 let intro1_real = Introduce1::new(
1157 AuthKeyType::ED25519_SHA3_256,
1158 ipt.intro_desc.ipt_sid_key().as_bytes().to_vec(),
1159 encrypted_body,
1160 );
1161
1162 /// Handler which expects just `INTRODUCE_ACK`
1163 struct Handler {
1164 /// Sender for `INTRODUCE_ACK`
1165 intro_ack_tx: proto_oneshot::Sender<IntroduceAck>,
1166 }
1167 impl MsgHandler for Handler {
1168 fn handle_msg(
1169 &mut self,
1170 msg: AnyRelayMsg,
1171 ) -> Result<MetaCellDisposition, tor_proto::Error> {
1172 self.intro_ack_tx
1173 .deliver_expected_message(msg, MetaCellDisposition::ConversationFinished)
1174 }
1175 }
1176 let handle_intro_proto_error = |error| FAE::IntroductionExchange { error, intro_index };
1177 let (intro_ack_tx, intro_ack_rx) = proto_oneshot::channel();
1178 let handler = Handler { intro_ack_tx };
1179
1180 debug!(
1181 "hs conn to {}: RPT {} IPT {}: making introduction - sending INTRODUCE1",
1182 &self.hsid,
1183 rend_pt.as_inner(),
1184 intro_index,
1185 );
1186
1187 intro_circ
1188 .m_start_conversation_last_hop(Some(intro1_real.into()), handler)
1189 .await
1190 .map_err(handle_intro_proto_error)?;
1191
1192 // Status is checked by `.success()`, and we don't look at the extensions;
1193 // just discard the known-successful `IntroduceAck`
1194 let _: IntroduceAck = intro_ack_rx
1195 .recv(handle_intro_proto_error)
1196 .await?
1197 .success()
1198 .map_err(|status| FAE::IntroductionFailed {
1199 status,
1200 intro_index,
1201 })?;
1202
1203 debug!(
1204 "hs conn to {}: RPT {} IPT {}: making introduction - success",
1205 &self.hsid,
1206 rend_pt.as_inner(),
1207 intro_index,
1208 );
1209
1210 // Having received INTRODUCE_ACK. we can forget about this circuit
1211 // (and potentially tear it down).
1212 drop(intro_circ);
1213
1214 Ok((
1215 rendezvous,
1216 Introduced {
1217 handshake_state,
1218 marker: PhantomData,
1219 },
1220 ))
1221 }
1222
1223 /// Attempt (once) to connect a rendezvous circuit using the given intro pt
1224 ///
1225 /// Timeouts here might be due to the IPT, RPT, service,
1226 /// or any of the intermediate relays.
1227 ///
1228 /// If, rather than a timeout, we actually encounter some kind of error,
1229 /// we'll return the appropriate `FailedAttemptError`.
1230 /// (Who is responsible may vary, so the `FailedAttemptError` variant will reflect that.)
1231 ///
1232 /// Does not apply a timeout
1233 async fn complete_rendezvous(
1234 &'c self,
1235 ipt: &UsableIntroPt<'_>,
1236 rendezvous: Rendezvous<'c, R, M>,
1237 introduced: Introduced<R, M>,
1238 ) -> Result<Arc<ClientCirc!(R, M)>, FAE> {
1239 use tor_proto::circuit::handshake;
1240
1241 let rend_pt = rend_pt_identity_for_error(&rendezvous.rend_relay);
1242 let intro_index = ipt.intro_index;
1243 let handle_proto_error = |error| FAE::RendezvousCompletionCircuitError {
1244 error,
1245 intro_index,
1246 rend_pt: rend_pt.clone(),
1247 };
1248
1249 debug!(
1250 "hs conn to {}: RPT {} IPT {}: awaiting rendezvous completion",
1251 &self.hsid,
1252 rend_pt.as_inner(),
1253 intro_index,
1254 );
1255
1256 let rend2_msg: Rendezvous2 = rendezvous.rend2_rx.recv(handle_proto_error).await?;
1257
1258 debug!(
1259 "hs conn to {}: RPT {} IPT {}: received RENDEZVOUS2",
1260 &self.hsid,
1261 rend_pt.as_inner(),
1262 intro_index,
1263 );
1264
1265 // In theory would be great if we could have multiple introduction attempts in parallel
1266 // with similar x,X values but different IPTs. However, our HS experts don't
1267 // think increasing parallelism here is important:
1268 // https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914438
1269 let handshake_state = introduced.handshake_state;
1270
1271 // Try to complete the cryptographic handshake.
1272 let keygen = handshake_state
1273 .client_receive_rend(rend2_msg.handshake_info())
1274 // If this goes wrong. either the onion service has mangled the crypto,
1275 // or the rendezvous point has misbehaved (that that is possible is a protocol bug),
1276 // or we have used the wrong handshake_state (let's assume that's not true).
1277 //
1278 // If this happens we'll go and try another RPT.
1279 .map_err(|error| FAE::RendezvousCompletionHandshake {
1280 error,
1281 intro_index,
1282 rend_pt: rend_pt.clone(),
1283 })?;
1284
1285 let params = onion_circparams_from_netparams(self.netdir.params())
1286 .map_err(into_internal!("Failed to build CircParameters"))?;
1287
1288 rendezvous
1289 .rend_circ
1290 .m_extend_virtual(
1291 handshake::RelayProtocol::HsV3,
1292 handshake::HandshakeRole::Initiator,
1293 keygen,
1294 params,
1295 )
1296 .await
1297 .map_err(into_internal!(
1298 "actually this is probably a 'circuit closed' error" // TODO HS
1299 ))?;
1300
1301 debug!(
1302 "hs conn to {}: RPT {} IPT {}: HS circuit established",
1303 &self.hsid,
1304 rend_pt.as_inner(),
1305 intro_index,
1306 );
1307
1308 Ok(rendezvous.rend_circ)
1309 }
1310
1311 /// Helper to estimate a timeout for a complicated operation
1312 ///
1313 /// `actions` is a list of `(count, action)`, where each entry
1314 /// represents doing `action`, `count` times sequentially.
1315 ///
1316 /// Combines the timeout estimates and returns an overall timeout.
1317 fn estimate_timeout(&self, actions: &[(u32, TimeoutsAction)]) -> Duration {
1318 // This algorithm is, perhaps, wrong. For uncorrelated variables, a particular
1319 // percentile estimate for a sum of random variables, is not calculated by adding the
1320 // percentile estimates of the individual variables.
1321 //
1322 // But the actual lengths of times of the operations aren't uncorrelated.
1323 // If they were *perfectly* correlated, then this addition would be correct.
1324 // It will do for now; it just might be rather longer than it ought to be.
1325 actions
1326 .iter()
1327 .map(|(count, action)| {
1328 self.circpool
1329 .m_estimate_timeout(action)
1330 .saturating_mul(*count)
1331 })
1332 .fold(Duration::ZERO, Duration::saturating_add)
1333 }
1334}
1335
1336/// Mocks used for testing `connect.rs`
1337///
1338/// This is different to `MockableConnectorData`,
1339/// which is used to *replace* this file, when testing `state.rs`.
1340///
1341/// `MocksForConnect` provides mock facilities for *testing* this file.
1342//
1343// TODO this should probably live somewhere else, maybe tor-circmgr even?
1344// TODO this really ought to be made by macros or something
1345trait MocksForConnect<R>: Clone {
1346 /// HS circuit pool
1347 type HsCircPool: MockableCircPool<R>;
1348
1349 /// A random number generator
1350 type Rng: rand::Rng + rand::CryptoRng;
1351
1352 /// Tell tests we got this descriptor text
1353 fn test_got_desc(&self, _: &HsDesc) {}
1354 /// Tell tests we got this circuit
1355 fn test_got_circ(&self, _: &Arc<ClientCirc!(R, Self)>) {}
1356 /// Tell tests we have obtained and sorted the intros like this
1357 fn test_got_ipts(&self, _: &[UsableIntroPt]) {}
1358
1359 /// Return a random number generator
1360 fn thread_rng(&self) -> Self::Rng;
1361}
1362/// Mock for `HsCircPool`
1363///
1364/// Methods start with `m_` to avoid the following problem:
1365/// `ClientCirc::start_conversation` (say) means
1366/// to use the inherent method if one exists,
1367/// but will use a trait method if there isn't an inherent method.
1368///
1369/// So if the inherent method is renamed, the call in the impl here
1370/// turns into an always-recursive call.
1371/// This is not detected by the compiler due to the situation being
1372/// complicated by futures, `#[async_trait]` etc.
1373/// <https://github.com/rust-lang/rust/issues/111177>
1374#[async_trait]
1375trait MockableCircPool<R> {
1376 /// Client circuit
1377 type ClientCirc: MockableClientCirc;
1378 async fn m_get_or_launch_specific(
1379 &self,
1380 netdir: &NetDir,
1381 kind: HsCircKind,
1382 target: impl CircTarget + Send + Sync + 'async_trait,
1383 ) -> tor_circmgr::Result<Arc<Self::ClientCirc>>;
1384
1385 /// Client circuit
1386 async fn m_get_or_launch_client_rend<'a>(
1387 &self,
1388 netdir: &'a NetDir,
1389 ) -> tor_circmgr::Result<(Arc<Self::ClientCirc>, Relay<'a>)>;
1390
1391 /// Estimate timeout
1392 fn m_estimate_timeout(&self, action: &TimeoutsAction) -> Duration;
1393}
1394/// Mock for `ClientCirc`
1395#[async_trait]
1396trait MockableClientCirc: Debug {
1397 /// Client circuit
1398 type DirStream: AsyncRead + AsyncWrite + Send + Unpin;
1399 async fn m_begin_dir_stream(self: Arc<Self>) -> tor_proto::Result<Self::DirStream>;
1400
1401 /// Converse
1402 async fn m_start_conversation_last_hop(
1403 &self,
1404 msg: Option<AnyRelayMsg>,
1405 reply_handler: impl MsgHandler + Send + 'static,
1406 ) -> tor_proto::Result<Self::Conversation<'_>>;
1407 /// Conversation
1408 type Conversation<'r>
1409 where
1410 Self: 'r;
1411
1412 /// Add a virtual hop to the circuit.
1413 async fn m_extend_virtual(
1414 &self,
1415 protocol: tor_proto::circuit::handshake::RelayProtocol,
1416 role: tor_proto::circuit::handshake::HandshakeRole,
1417 handshake: impl tor_proto::circuit::handshake::KeyGenerator + Send,
1418 params: CircParameters,
1419 ) -> tor_proto::Result<()>;
1420}
1421
1422impl<R: Runtime> MocksForConnect<R> for () {
1423 type HsCircPool = HsCircPool<R>;
1424 type Rng = rand::rngs::ThreadRng;
1425
1426 fn thread_rng(&self) -> Self::Rng {
1427 rand::rng()
1428 }
1429}
1430#[async_trait]
1431impl<R: Runtime> MockableCircPool<R> for HsCircPool<R> {
1432 type ClientCirc = ClientCirc;
1433 async fn m_get_or_launch_specific(
1434 &self,
1435 netdir: &NetDir,
1436 kind: HsCircKind,
1437 target: impl CircTarget + Send + Sync + 'async_trait,
1438 ) -> tor_circmgr::Result<Arc<ClientCirc>> {
1439 HsCircPool::get_or_launch_specific(self, netdir, kind, target).await
1440 }
1441 async fn m_get_or_launch_client_rend<'a>(
1442 &self,
1443 netdir: &'a NetDir,
1444 ) -> tor_circmgr::Result<(Arc<ClientCirc>, Relay<'a>)> {
1445 HsCircPool::get_or_launch_client_rend(self, netdir).await
1446 }
1447 fn m_estimate_timeout(&self, action: &TimeoutsAction) -> Duration {
1448 HsCircPool::estimate_timeout(self, action)
1449 }
1450}
1451#[async_trait]
1452impl MockableClientCirc for ClientCirc {
1453 /// Client circuit
1454 type DirStream = tor_proto::stream::DataStream;
1455 async fn m_begin_dir_stream(self: Arc<Self>) -> tor_proto::Result<Self::DirStream> {
1456 ClientCirc::begin_dir_stream(self).await
1457 }
1458 async fn m_start_conversation_last_hop(
1459 &self,
1460 msg: Option<AnyRelayMsg>,
1461 reply_handler: impl MsgHandler + Send + 'static,
1462 ) -> tor_proto::Result<Self::Conversation<'_>> {
1463 let last_hop = self.last_hop_num()?;
1464 ClientCirc::start_conversation(self, msg, reply_handler, last_hop).await
1465 }
1466 type Conversation<'r> = tor_proto::circuit::Conversation<'r>;
1467
1468 async fn m_extend_virtual(
1469 &self,
1470 protocol: tor_proto::circuit::handshake::RelayProtocol,
1471 role: tor_proto::circuit::handshake::HandshakeRole,
1472 handshake: impl tor_proto::circuit::handshake::KeyGenerator + Send,
1473 params: CircParameters,
1474 ) -> tor_proto::Result<()> {
1475 ClientCirc::extend_virtual(self, protocol, role, handshake, params).await
1476 }
1477}
1478
1479#[async_trait]
1480impl MockableConnectorData for Data {
1481 type ClientCirc = ClientCirc;
1482 type MockGlobalState = ();
1483
1484 async fn connect<R: Runtime>(
1485 connector: &HsClientConnector<R>,
1486 netdir: Arc<NetDir>,
1487 config: Arc<Config>,
1488 hsid: HsId,
1489 data: &mut Self,
1490 secret_keys: HsClientSecretKeys,
1491 ) -> Result<Arc<Self::ClientCirc>, ConnError> {
1492 connect(connector, netdir, config, hsid, data, secret_keys).await
1493 }
1494
1495 fn circuit_is_ok(circuit: &Self::ClientCirc) -> bool {
1496 !circuit.is_closing()
1497 }
1498}
1499
1500#[cfg(test)]
1501mod test {
1502 // @@ begin test lint list maintained by maint/add_warning @@
1503 #![allow(clippy::bool_assert_comparison)]
1504 #![allow(clippy::clone_on_copy)]
1505 #![allow(clippy::dbg_macro)]
1506 #![allow(clippy::mixed_attributes_style)]
1507 #![allow(clippy::print_stderr)]
1508 #![allow(clippy::print_stdout)]
1509 #![allow(clippy::single_char_pattern)]
1510 #![allow(clippy::unwrap_used)]
1511 #![allow(clippy::unchecked_duration_subtraction)]
1512 #![allow(clippy::useless_vec)]
1513 #![allow(clippy::needless_pass_by_value)]
1514 //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
1515
1516 #![allow(dead_code, unused_variables)] // TODO HS TESTS delete, after tests are completed
1517
1518 use super::*;
1519 use crate::*;
1520 use futures::FutureExt as _;
1521 use std::{iter, panic::AssertUnwindSafe};
1522 use tokio_crate as tokio;
1523 use tor_async_utils::JoinReadWrite;
1524 use tor_basic_utils::test_rng::{testing_rng, TestingRng};
1525 use tor_hscrypto::pk::{HsClientDescEncKey, HsClientDescEncKeypair};
1526 use tor_llcrypto::pk::curve25519;
1527 use tor_netdoc::doc::{hsdesc::test_data, netstatus::Lifetime};
1528 use tor_rtcompat::tokio::TokioNativeTlsRuntime;
1529 use tor_rtcompat::RuntimeSubstExt as _;
1530 #[allow(deprecated)] // TODO #1885
1531 use tor_rtmock::time::MockSleepProvider;
1532 use tracing_test::traced_test;
1533
1534 #[derive(Debug, Default)]
1535 struct MocksGlobal {
1536 hsdirs_asked: Vec<OwnedCircTarget>,
1537 got_desc: Option<HsDesc>,
1538 }
1539 #[derive(Clone, Debug)]
1540 struct Mocks<I> {
1541 mglobal: Arc<Mutex<MocksGlobal>>,
1542 id: I,
1543 }
1544
1545 impl<I> Mocks<I> {
1546 fn map_id<J>(&self, f: impl FnOnce(&I) -> J) -> Mocks<J> {
1547 Mocks {
1548 mglobal: self.mglobal.clone(),
1549 id: f(&self.id),
1550 }
1551 }
1552 }
1553
1554 impl<R: Runtime> MocksForConnect<R> for Mocks<()> {
1555 type HsCircPool = Mocks<()>;
1556 type Rng = TestingRng;
1557
1558 fn test_got_desc(&self, desc: &HsDesc) {
1559 self.mglobal.lock().unwrap().got_desc = Some(desc.clone());
1560 }
1561
1562 fn test_got_ipts(&self, desc: &[UsableIntroPt]) {}
1563
1564 fn thread_rng(&self) -> Self::Rng {
1565 testing_rng()
1566 }
1567 }
1568 #[allow(clippy::diverging_sub_expression)] // async_trait + todo!()
1569 #[async_trait]
1570 impl<R: Runtime> MockableCircPool<R> for Mocks<()> {
1571 type ClientCirc = Mocks<()>;
1572 async fn m_get_or_launch_specific(
1573 &self,
1574 _netdir: &NetDir,
1575 kind: HsCircKind,
1576 target: impl CircTarget + Send + Sync + 'async_trait,
1577 ) -> tor_circmgr::Result<Arc<Self::ClientCirc>> {
1578 assert_eq!(kind, HsCircKind::ClientHsDir);
1579 let target = OwnedCircTarget::from_circ_target(&target);
1580 self.mglobal.lock().unwrap().hsdirs_asked.push(target);
1581 // Adding the `Arc` here is a little ugly, but that's what we get
1582 // for using the same Mocks for everything.
1583 Ok(Arc::new(self.clone()))
1584 }
1585 /// Client circuit
1586 async fn m_get_or_launch_client_rend<'a>(
1587 &self,
1588 netdir: &'a NetDir,
1589 ) -> tor_circmgr::Result<(Arc<ClientCirc!(R, Self)>, Relay<'a>)> {
1590 todo!()
1591 }
1592
1593 fn m_estimate_timeout(&self, action: &TimeoutsAction) -> Duration {
1594 Duration::from_secs(10)
1595 }
1596 }
1597 #[allow(clippy::diverging_sub_expression)] // async_trait + todo!()
1598 #[async_trait]
1599 impl MockableClientCirc for Mocks<()> {
1600 type DirStream = JoinReadWrite<futures::io::Cursor<Box<[u8]>>, futures::io::Sink>;
1601 type Conversation<'r> = &'r ();
1602 async fn m_begin_dir_stream(self: Arc<Self>) -> tor_proto::Result<Self::DirStream> {
1603 let response = format!(
1604 r#"HTTP/1.1 200 OK
1605
1606{}"#,
1607 test_data::TEST_DATA_2
1608 )
1609 .into_bytes()
1610 .into_boxed_slice();
1611
1612 Ok(JoinReadWrite::new(
1613 futures::io::Cursor::new(response),
1614 futures::io::sink(),
1615 ))
1616 }
1617 async fn m_start_conversation_last_hop(
1618 &self,
1619 msg: Option<AnyRelayMsg>,
1620 reply_handler: impl MsgHandler + Send + 'static,
1621 ) -> tor_proto::Result<Self::Conversation<'_>> {
1622 todo!()
1623 }
1624
1625 async fn m_extend_virtual(
1626 &self,
1627 protocol: tor_proto::circuit::handshake::RelayProtocol,
1628 role: tor_proto::circuit::handshake::HandshakeRole,
1629 handshake: impl tor_proto::circuit::handshake::KeyGenerator + Send,
1630 params: CircParameters,
1631 ) -> tor_proto::Result<()> {
1632 todo!()
1633 }
1634 }
1635
1636 #[traced_test]
1637 #[tokio::test]
1638 async fn test_connect() {
1639 let valid_after = humantime::parse_rfc3339("2023-02-09T12:00:00Z").unwrap();
1640 let fresh_until = valid_after + humantime::parse_duration("1 hours").unwrap();
1641 let valid_until = valid_after + humantime::parse_duration("24 hours").unwrap();
1642 let lifetime = Lifetime::new(valid_after, fresh_until, valid_until).unwrap();
1643
1644 let netdir = tor_netdir::testnet::construct_custom_netdir_with_params(
1645 tor_netdir::testnet::simple_net_func,
1646 iter::empty::<(&str, _)>(),
1647 Some(lifetime),
1648 )
1649 .expect("failed to build default testing netdir");
1650
1651 let netdir = Arc::new(netdir.unwrap_if_sufficient().unwrap());
1652 let runtime = TokioNativeTlsRuntime::current().unwrap();
1653 let now = humantime::parse_rfc3339("2023-02-09T12:00:00Z").unwrap();
1654 #[allow(deprecated)] // TODO #1885
1655 let mock_sp = MockSleepProvider::new(now);
1656 let runtime = runtime
1657 .with_sleep_provider(mock_sp.clone())
1658 .with_coarse_time_provider(mock_sp);
1659 let time_period = netdir.hs_time_period();
1660
1661 let mglobal = Arc::new(Mutex::new(MocksGlobal::default()));
1662 let mocks = Mocks { mglobal, id: () };
1663 // From C Tor src/test/test_hs_common.c test_build_address
1664 let hsid = test_data::TEST_HSID_2.into();
1665 let mut data = Data::default();
1666
1667 let pk: HsClientDescEncKey = curve25519::PublicKey::from(test_data::TEST_PUBKEY_2).into();
1668 let sk = curve25519::StaticSecret::from(test_data::TEST_SECKEY_2).into();
1669 let mut secret_keys_builder = HsClientSecretKeysBuilder::default();
1670 secret_keys_builder.ks_hsc_desc_enc(HsClientDescEncKeypair::new(pk.clone(), sk));
1671 let secret_keys = secret_keys_builder.build().unwrap();
1672
1673 let ctx = Context::new(
1674 &runtime,
1675 &mocks,
1676 netdir,
1677 Default::default(),
1678 hsid,
1679 secret_keys,
1680 mocks.clone(),
1681 )
1682 .unwrap();
1683
1684 let _got = AssertUnwindSafe(ctx.connect(&mut data))
1685 .catch_unwind() // TODO HS TESTS: remove this and the AssertUnwindSafe
1686 .await;
1687
1688 let (hs_blind_id_key, subcredential) = HsIdKey::try_from(hsid)
1689 .unwrap()
1690 .compute_blinded_key(time_period)
1691 .unwrap();
1692 let hs_blind_id = hs_blind_id_key.id();
1693
1694 let sk = curve25519::StaticSecret::from(test_data::TEST_SECKEY_2).into();
1695
1696 let hsdesc = HsDesc::parse_decrypt_validate(
1697 test_data::TEST_DATA_2,
1698 &hs_blind_id,
1699 now,
1700 &subcredential,
1701 Some(&HsClientDescEncKeypair::new(pk, sk)),
1702 )
1703 .unwrap()
1704 .dangerously_assume_timely();
1705
1706 let mglobal = mocks.mglobal.lock().unwrap();
1707 assert_eq!(mglobal.hsdirs_asked.len(), 1);
1708 // TODO hs: here and in other places, consider implementing PartialEq instead, or creating
1709 // an assert_dbg_eq macro (which would be part of a test_helpers crate or something)
1710 assert_eq!(
1711 format!("{:?}", mglobal.got_desc),
1712 format!("{:?}", Some(hsdesc))
1713 );
1714
1715 // Check how long the descriptor is valid for
1716 let (start_time, end_time) = data.desc.as_ref().unwrap().bounds();
1717 assert_eq!(start_time, None);
1718
1719 let desc_valid_until = humantime::parse_rfc3339("2023-02-11T20:00:00Z").unwrap();
1720 assert_eq!(end_time, Some(desc_valid_until));
1721
1722 // TODO HS TESTS: check the circuit in got is the one we gave out
1723
1724 // TODO HS TESTS: continue with this
1725 }
1726
1727 // TODO HS TESTS: Test IPT state management and expiry:
1728 // - obtain a test descriptor with only a broken ipt
1729 // (broken in the sense that intro can be attempted, but will fail somehow)
1730 // - try to make a connection and expect it to fail
1731 // - assert that the ipt data isn't empty
1732 // - cause the descriptor to expire (advance clock)
1733 // - start using a mocked RNG if we weren't already and pin its seed here
1734 // - make a new descriptor with two IPTs: the broken one from earlier, and a new one
1735 // - make a new connection
1736 // - use test_got_ipts to check that the random numbers
1737 // would sort the bad intro first, *and* that the good one is appears first
1738 // - assert that connection succeeded
1739 // - cause the circuit and descriptor to expire (advance clock)
1740 // - go back to the previous descriptor contents, but with a new validity period
1741 // - try to make a connection
1742 // - use test_got_ipts to check that only the broken ipt is present
1743
1744 // TODO HS TESTS: test retries (of every retry loop we have here)
1745 // TODO HS TESTS: test error paths
1746}