tor_circmgr/
mgr.rs

1//! Abstract code to manage a set of circuits.
2//!
3//! This module implements the real logic for deciding when and how to
4//! launch circuits, and for which circuits to hand out in response to
5//! which requests.
6//!
7//! For testing and abstraction purposes, this module _does not_
8//! actually know anything about circuits _per se_.  Instead,
9//! everything is handled using a set of traits that are internal to this
10//! crate:
11//!
12//!  * [`AbstractCirc`] is a view of a circuit.
13//!  * [`AbstractCircBuilder`] knows how to build an `AbstractCirc`.
14//!
15//! Using these traits, the [`AbstractCircMgr`] object manages a set of
16//! circuits, launching them as necessary, and keeping track of the
17//! restrictions on their use.
18
19// TODO:
20// - Testing
21//    - Error from prepare_action()
22//    - Error reported by restrict_mut?
23
24use crate::config::CircuitTiming;
25use crate::usage::{SupportedCircUsage, TargetCircUsage};
26use crate::{timeouts, DirInfo, Error, PathConfig, Result};
27
28use retry_error::RetryError;
29use tor_async_utils::mpsc_channel_no_memquota;
30use tor_basic_utils::retry::RetryDelay;
31use tor_config::MutCfg;
32use tor_error::{debug_report, info_report, internal, warn_report, AbsRetryTime, HasRetryTime};
33#[cfg(feature = "vanguards")]
34use tor_guardmgr::vanguards::VanguardMgr;
35use tor_linkspec::CircTarget;
36use tor_proto::circuit::{CircParameters, Path, UniqId};
37use tor_rtcompat::{Runtime, SleepProviderExt};
38
39use async_trait::async_trait;
40use futures::channel::mpsc;
41use futures::future::{FutureExt, Shared};
42use futures::stream::{FuturesUnordered, StreamExt};
43use futures::task::SpawnExt;
44use oneshot_fused_workaround as oneshot;
45use std::collections::HashMap;
46use std::fmt::Debug;
47use std::hash::Hash;
48use std::panic::AssertUnwindSafe;
49use std::sync::{self, Arc, Weak};
50use std::time::{Duration, Instant};
51use tracing::{debug, warn};
52use weak_table::PtrWeakHashSet;
53
54mod streams;
55
56/// Description of how we got a circuit.
57#[non_exhaustive]
58#[derive(Debug, Copy, Clone, Eq, PartialEq)]
59pub(crate) enum CircProvenance {
60    /// This channel was newly launched, or was in progress and finished while
61    /// we were waiting.
62    NewlyCreated,
63    /// This channel already existed when we asked for it.
64    Preexisting,
65}
66
67#[derive(Clone, Debug, thiserror::Error)]
68#[non_exhaustive]
69pub enum RestrictionFailed {
70    /// Tried to restrict a specification, but the circuit didn't support the
71    /// requested usage.
72    #[error("Specification did not support desired usage")]
73    NotSupported,
74}
75
76/// Minimal abstract view of a circuit.
77///
78/// From this module's point of view, circuits are simply objects
79/// with unique identities, and a possible closed-state.
80#[async_trait]
81pub(crate) trait AbstractCirc: Debug {
82    /// Type for a unique identifier for circuits.
83    type Id: Clone + Debug + Hash + Eq + Send + Sync;
84    /// Return the unique identifier for this circuit.
85    ///
86    /// # Requirements
87    ///
88    /// The values returned by this function are unique for distinct
89    /// circuits.
90    fn id(&self) -> Self::Id;
91
92    /// Return true if this circuit is usable for some purpose.
93    ///
94    /// Reasons a circuit might be unusable include being closed.
95    fn usable(&self) -> bool;
96
97    /// Return a [`Path`] object describing all the hops in this circuit.
98    ///
99    /// Returns an error if the circuit is closed.
100    ///
101    /// Note that this `Path` is not automatically updated if the circuit is
102    /// extended.
103    fn path_ref(&self) -> tor_proto::Result<Arc<Path>>;
104
105    /// Return the number of hops in this circuit.
106    ///
107    /// Returns an error if the circuit is closed.
108    ///
109    /// NOTE: This function will currently return only the number of hops
110    /// _currently_ in the circuit. If there is an extend operation in progress,
111    /// the currently pending hop may or may not be counted, depending on whether
112    /// the extend operation finishes before this call is done.
113    fn n_hops(&self) -> tor_proto::Result<usize>;
114
115    /// Return true if this circuit is closed and therefore unusable.
116    fn is_closing(&self) -> bool;
117
118    /// Return a process-unique identifier for this circuit.
119    fn unique_id(&self) -> UniqId;
120
121    /// Extend the circuit via the most appropriate handshake to a new `target` hop.
122    async fn extend<T: CircTarget + Sync>(
123        &self,
124        target: &T,
125        params: CircParameters,
126    ) -> tor_proto::Result<()>;
127}
128
129/// A plan for an `AbstractCircBuilder` that can maybe be mutated by tests.
130///
131/// You should implement this trait using all default methods for all code that isn't test code.
132pub(crate) trait MockablePlan {
133    /// Add a reason string that was passed to `SleepProvider::block_advance()` to this object
134    /// so that it knows what to pass to `::release_advance()`.
135    fn add_blocked_advance_reason(&mut self, _reason: String) {}
136}
137
138/// An object that knows how to build circuits.
139///
140/// AbstractCircBuilder creates circuits in two phases.  First, a plan is
141/// made for how to build the circuit.  This planning phase should be
142/// relatively fast, and must not suspend or block.  Its purpose is to
143/// get an early estimate of which operations the circuit will be able
144/// to support when it's done.
145///
146/// Second, the circuit is actually built, using the plan as input.
147#[async_trait]
148pub(crate) trait AbstractCircBuilder<R: Runtime>: Send + Sync {
149    /// The circuit type that this builder knows how to build.
150    type Circ: AbstractCirc + Send + Sync;
151    /// An opaque type describing how a given circuit will be built.
152    /// It may represent some or all of a path-or it may not.
153    //
154    // TODO: It would be nice to have this parameterized on a lifetime,
155    // and have that lifetime depend on the lifetime of the directory.
156    // But I don't think that rust can do that.
157    //
158    // HACK(eta): I don't like the fact that `MockablePlan` is necessary here.
159    type Plan: Send + Debug + MockablePlan;
160
161    // TODO: I'd like to have a Dir type here to represent
162    // create::DirInfo, but that would need to be parameterized too,
163    // and would make everything complicated.
164
165    /// Form a plan for how to build a new circuit that supports `usage`.
166    ///
167    /// Return an opaque Plan object, and a new spec describing what
168    /// the circuit will actually support when it's built.  (For
169    /// example, if the input spec requests a circuit that connect to
170    /// port 80, then "planning" the circuit might involve picking an
171    /// exit that supports port 80, and the resulting spec might be
172    /// the exit's complete list of supported ports.)
173    ///
174    /// # Requirements
175    ///
176    /// The resulting Spec must support `usage`.
177    fn plan_circuit(
178        &self,
179        usage: &TargetCircUsage,
180        dir: DirInfo<'_>,
181    ) -> Result<(Self::Plan, SupportedCircUsage)>;
182
183    /// Construct a circuit according to a given plan.
184    ///
185    /// On success, return a spec describing what the circuit can be used for,
186    /// and the circuit that was just constructed.
187    ///
188    /// This function should implement some kind of a timeout for
189    /// circuits that are taking too long.
190    ///
191    /// # Requirements
192    ///
193    /// The spec that this function returns _must_ support the usage
194    /// that was originally passed to `plan_circuit`.  It _must_ also
195    /// contain the spec that was originally returned by
196    /// `plan_circuit`.
197    async fn build_circuit(
198        &self,
199        plan: Self::Plan,
200    ) -> Result<(SupportedCircUsage, Arc<Self::Circ>)>;
201
202    /// Return a "parallelism factor" with which circuits should be
203    /// constructed for a given purpose.
204    ///
205    /// If this function returns N, then whenever we launch circuits
206    /// for this purpose, then we launch N in parallel.
207    ///
208    /// The default implementation returns 1.  The value of 0 is
209    /// treated as if it were 1.
210    fn launch_parallelism(&self, usage: &TargetCircUsage) -> usize {
211        let _ = usage; // default implementation ignores this.
212        1
213    }
214
215    /// Return a "parallelism factor" for which circuits should be
216    /// used for a given purpose.
217    ///
218    /// If this function returns N, then whenever we select among
219    /// open circuits for this purpose, we choose at random from the
220    /// best N.
221    ///
222    /// The default implementation returns 1.  The value of 0 is
223    /// treated as if it were 1.
224    // TODO: Possibly this doesn't belong in this trait.
225    fn select_parallelism(&self, usage: &TargetCircUsage) -> usize {
226        let _ = usage; // default implementation ignores this.
227        1
228    }
229
230    /// Return true if we are currently attempting to learn circuit
231    /// timeouts by building testing circuits.
232    fn learning_timeouts(&self) -> bool;
233
234    /// Flush state to the state manager if we own the lock.
235    ///
236    /// Return `Ok(true)` if we saved, and `Ok(false)` if we didn't hold the lock.
237    fn save_state(&self) -> Result<bool>;
238
239    /// Return this builder's [`PathConfig`](crate::PathConfig).
240    fn path_config(&self) -> Arc<PathConfig>;
241
242    /// Replace this builder's [`PathConfig`](crate::PathConfig).
243    // TODO: This is dead_code because we only call this for the CircuitBuilder specialization of
244    // CircMgr, not from the generic version, because this trait doesn't provide guardmgr, which is
245    // needed by the [`CircMgr::reconfigure`] function that would be the only caller of this. We
246    // should add `guardmgr` to this trait, make [`CircMgr::reconfigure`] generic, and remove this
247    // dead_code marking.
248    #[allow(dead_code)]
249    fn set_path_config(&self, new_config: PathConfig);
250
251    /// Return a reference to this builder's timeout estimator.
252    fn estimator(&self) -> &timeouts::Estimator;
253
254    /// Return a reference to this builder's `VanguardMgr`.
255    #[cfg(feature = "vanguards")]
256    fn vanguardmgr(&self) -> &Arc<VanguardMgr<R>>;
257
258    /// Replace our state with a new owning state, assuming we have
259    /// storage permission.
260    fn upgrade_to_owned_state(&self) -> Result<()>;
261
262    /// Reload persistent state from disk, if we don't have storage permission.
263    fn reload_state(&self) -> Result<()>;
264
265    /// Return a reference to this builder's `GuardMgr`.
266    fn guardmgr(&self) -> &tor_guardmgr::GuardMgr<R>;
267
268    /// Reconfigure this builder using the latest set of network parameters.
269    ///
270    /// (NOTE: for now, this only affects circuit timeout estimation.)
271    fn update_network_parameters(&self, p: &tor_netdir::params::NetParameters);
272}
273
274/// Enumeration to track the expiration state of a circuit.
275///
276/// A circuit an either be unused (at which point it should expire if it is
277/// _still unused_ by a certain time, or dirty (at which point it should
278/// expire after a certain duration).
279///
280/// All circuits start out "unused" and become "dirty" when their spec
281/// is first restricted -- that is, when they are first handed out to be
282/// used for a request.
283#[derive(Debug, Clone, PartialEq, Eq)]
284enum ExpirationInfo {
285    /// The circuit has never been used.
286    Unused {
287        /// A time when the circuit should expire.
288        use_before: Instant,
289    },
290    /// The circuit has been used (or at least, restricted for use with a
291    /// request) at least once.
292    Dirty {
293        /// The time at which this circuit's spec was first restricted.
294        dirty_since: Instant,
295    },
296}
297
298impl ExpirationInfo {
299    /// Return an ExpirationInfo for a newly created circuit.
300    fn new(use_before: Instant) -> Self {
301        ExpirationInfo::Unused { use_before }
302    }
303
304    /// Mark this ExpirationInfo as dirty, if it is not already dirty.
305    fn mark_dirty(&mut self, now: Instant) {
306        if matches!(self, ExpirationInfo::Unused { .. }) {
307            *self = ExpirationInfo::Dirty { dirty_since: now };
308        }
309    }
310}
311
312/// An entry for an open circuit held by an `AbstractCircMgr`.
313#[derive(Debug, Clone)]
314pub(crate) struct OpenEntry<C> {
315    /// The supported usage for this circuit.
316    spec: SupportedCircUsage,
317    /// The circuit under management.
318    circ: Arc<C>,
319    /// When does this circuit expire?
320    ///
321    /// (Note that expired circuits are removed from the manager,
322    /// which does not actually close them until there are no more
323    /// references to them.)
324    expiration: ExpirationInfo,
325}
326
327impl<C: AbstractCirc> OpenEntry<C> {
328    /// Make a new OpenEntry for a given circuit and spec.
329    fn new(spec: SupportedCircUsage, circ: Arc<C>, expiration: ExpirationInfo) -> Self {
330        OpenEntry {
331            spec,
332            circ,
333            expiration,
334        }
335    }
336
337    /// Return true if this circuit can be used for `usage`.
338    pub(crate) fn supports(&self, usage: &TargetCircUsage) -> bool {
339        self.circ.usable() && self.spec.supports(usage)
340    }
341
342    /// Change this circuit's permissible usage, based on its having
343    /// been used for `usage` at time `now`.
344    ///
345    /// Return an error if this circuit may not be used for `usage`.
346    fn restrict_mut(&mut self, usage: &TargetCircUsage, now: Instant) -> Result<()> {
347        self.spec.restrict_mut(usage)?;
348        self.expiration.mark_dirty(now);
349        Ok(())
350    }
351
352    /// Find the "best" entry from a slice of OpenEntry for supporting
353    /// a given `usage`.
354    ///
355    /// If `parallelism` is some N greater than 1, we pick randomly
356    /// from the best `N` circuits.
357    ///
358    /// # Requirements
359    ///
360    /// Requires that `ents` is nonempty, and that every element of `ents`
361    /// supports `spec`.
362    fn find_best<'a>(
363        // we do not mutate `ents`, but to return `&mut Self` we must have a mutable borrow
364        ents: &'a mut [&'a mut Self],
365        usage: &TargetCircUsage,
366        parallelism: usize,
367    ) -> &'a mut Self {
368        let _ = usage; // not yet used.
369        use rand::seq::IndexedMutRandom as _;
370        let parallelism = parallelism.clamp(1, ents.len());
371        // TODO: Actually look over the whole list to see which is better.
372        let slice = &mut ents[0..parallelism];
373        let mut rng = rand::rng();
374        slice.choose_mut(&mut rng).expect("Input list was empty")
375    }
376
377    /// Return true if this circuit has been marked as dirty before
378    /// `dirty_cutoff`, or if it is an unused circuit set to expire before
379    /// `unused_cutoff`.
380    fn should_expire(&self, unused_cutoff: Instant, dirty_cutoff: Instant) -> bool {
381        match self.expiration {
382            ExpirationInfo::Unused { use_before } => use_before <= unused_cutoff,
383            ExpirationInfo::Dirty { dirty_since } => dirty_since <= dirty_cutoff,
384        }
385    }
386}
387
388/// A result type whose "Ok" value is the Id for a circuit from B.
389type PendResult<B, R> = Result<<<B as AbstractCircBuilder<R>>::Circ as AbstractCirc>::Id>;
390
391/// An in-progress circuit request tracked by an `AbstractCircMgr`.
392///
393/// (In addition to tracking circuits, `AbstractCircMgr` tracks
394/// _requests_ for circuits.  The manager uses these entries if it
395/// finds that some circuit created _after_ a request first launched
396/// might meet the request's requirements.)
397struct PendingRequest<B: AbstractCircBuilder<R>, R: Runtime> {
398    /// Usage for the operation requested by this request
399    usage: TargetCircUsage,
400    /// A channel to use for telling this request about circuits that it
401    /// might like.
402    notify: mpsc::Sender<PendResult<B, R>>,
403}
404
405impl<B: AbstractCircBuilder<R>, R: Runtime> PendingRequest<B, R> {
406    /// Return true if this request would be supported by `spec`.
407    fn supported_by(&self, spec: &SupportedCircUsage) -> bool {
408        spec.supports(&self.usage)
409    }
410}
411
412/// An entry for an under-construction in-progress circuit tracked by
413/// an `AbstractCircMgr`.
414#[derive(Debug)]
415struct PendingEntry<B: AbstractCircBuilder<R>, R: Runtime> {
416    /// Specification that this circuit will support, if every pending
417    /// request that is waiting for it is attached to it.
418    ///
419    /// This spec becomes more and more restricted as more pending
420    /// requests are waiting for this circuit.
421    ///
422    /// This spec is contained by circ_spec, and must support the usage
423    /// of every pending request that's waiting for this circuit.
424    tentative_assignment: sync::Mutex<SupportedCircUsage>,
425    /// A shared future for requests to use when waiting for
426    /// notification of this circuit's success.
427    receiver: Shared<oneshot::Receiver<PendResult<B, R>>>,
428}
429
430impl<B: AbstractCircBuilder<R>, R: Runtime> PendingEntry<B, R> {
431    /// Make a new PendingEntry that starts out supporting a given
432    /// spec.  Return that PendingEntry, along with a Sender to use to
433    /// report the result of building this circuit.
434    fn new(circ_spec: &SupportedCircUsage) -> (Self, oneshot::Sender<PendResult<B, R>>) {
435        let tentative_assignment = sync::Mutex::new(circ_spec.clone());
436        let (sender, receiver) = oneshot::channel();
437        let receiver = receiver.shared();
438        let entry = PendingEntry {
439            tentative_assignment,
440            receiver,
441        };
442        (entry, sender)
443    }
444
445    /// Return true if this circuit's current tentative assignment
446    /// supports `usage`.
447    fn supports(&self, usage: &TargetCircUsage) -> bool {
448        let assignment = self.tentative_assignment.lock().expect("poisoned lock");
449        assignment.supports(usage)
450    }
451
452    /// Try to change the tentative assignment of this circuit by
453    /// restricting it for use with `usage`.
454    ///
455    /// Return an error if the current tentative assignment didn't
456    /// support `usage` in the first place.
457    fn tentative_restrict_mut(&self, usage: &TargetCircUsage) -> Result<()> {
458        if let Ok(mut assignment) = self.tentative_assignment.lock() {
459            assignment.restrict_mut(usage)?;
460        }
461        Ok(())
462    }
463
464    /// Find the best PendingEntry values from a slice for use with
465    /// `usage`.
466    ///
467    /// # Requirements
468    ///
469    /// The `ents` slice must not be empty.  Every element of `ents`
470    /// must support the given spec.
471    fn find_best(ents: &[Arc<Self>], usage: &TargetCircUsage) -> Vec<Arc<Self>> {
472        // TODO: Actually look over the whole list to see which is better.
473        let _ = usage; // currently unused
474        vec![Arc::clone(&ents[0])]
475    }
476}
477
478/// Wrapper type to represent the state between planning to build a
479/// circuit and constructing it.
480#[derive(Debug)]
481struct CircBuildPlan<B: AbstractCircBuilder<R>, R: Runtime> {
482    /// The Plan object returned by [`AbstractCircBuilder::plan_circuit`].
483    plan: B::Plan,
484    /// A sender to notify any pending requests when this circuit is done.
485    sender: oneshot::Sender<PendResult<B, R>>,
486    /// A strong entry to the PendingEntry for this circuit build attempt.
487    pending: Arc<PendingEntry<B, R>>,
488}
489
490/// The inner state of an [`AbstractCircMgr`].
491struct CircList<B: AbstractCircBuilder<R>, R: Runtime> {
492    /// A map from circuit ID to [`OpenEntry`] values for all managed
493    /// open circuits.
494    ///
495    /// A circuit is added here from [`AbstractCircMgr::do_launch`] when we find
496    /// that it completes successfully, and has not been cancelled.
497    /// When we decide that such a circuit should no longer be handed out for
498    /// any new requests, we "retire" the circuit by removing it from this map.
499    #[allow(clippy::type_complexity)]
500    open_circs: HashMap<<B::Circ as AbstractCirc>::Id, OpenEntry<B::Circ>>,
501    /// Weak-set of PendingEntry for circuits that are being built.
502    ///
503    /// Because this set only holds weak references, and the only strong
504    /// reference to the PendingEntry is held by the task building the circuit,
505    /// this set's members are lazily removed after the circuit is either built
506    /// or fails to build.
507    ///
508    /// This set is used for two purposes:
509    ///
510    /// 1. When a circuit request finds that there is no open circuit for its
511    ///    purposes, it checks here to see if there is a pending circuit that it
512    ///    could wait for.
513    /// 2. When a pending circuit finishes building, it checks here to make sure
514    ///    that it has not been cancelled. (Removing an entry from this set marks
515    ///    it as cancelled.)
516    ///
517    /// An entry is added here in [`AbstractCircMgr::prepare_action`] when we
518    /// decide that a circuit needs to be launched.
519    ///
520    /// Later, in [`AbstractCircMgr::do_launch`], once the circuit has finished
521    /// (or failed), we remove the entry (by pointer identity).
522    /// If we cannot find the entry, we conclude that the request has been
523    /// _cancelled_, and so we discard any circuit that was created.
524    pending_circs: PtrWeakHashSet<Weak<PendingEntry<B, R>>>,
525    /// Weak-set of PendingRequest for requests that are waiting for a
526    /// circuit to be built.
527    ///
528    /// Because this set only holds weak references, and the only
529    /// strong reference to the PendingRequest is held by the task
530    /// waiting for the circuit to be built, this set's members are
531    /// lazily removed after the request succeeds or fails.
532    pending_requests: PtrWeakHashSet<Weak<PendingRequest<B, R>>>,
533}
534
535impl<B: AbstractCircBuilder<R>, R: Runtime> CircList<B, R> {
536    /// Make a new empty `CircList`
537    fn new() -> Self {
538        CircList {
539            open_circs: HashMap::new(),
540            pending_circs: PtrWeakHashSet::new(),
541            pending_requests: PtrWeakHashSet::new(),
542        }
543    }
544
545    /// Add `e` to the list of open circuits.
546    fn add_open(&mut self, e: OpenEntry<B::Circ>) {
547        let id = e.circ.id();
548        self.open_circs.insert(id, e);
549    }
550
551    /// Find all the usable open circuits that support `usage`.
552    ///
553    /// Return None if there are no such circuits.
554    fn find_open(&mut self, usage: &TargetCircUsage) -> Option<Vec<&mut OpenEntry<B::Circ>>> {
555        let list = self.open_circs.values_mut();
556        let v = SupportedCircUsage::find_supported(list, usage);
557        if v.is_empty() {
558            None
559        } else {
560            Some(v)
561        }
562    }
563
564    /// Find an open circuit by ID.
565    ///
566    /// Return None if no such circuit exists in this list.
567    fn get_open_mut(
568        &mut self,
569        id: &<B::Circ as AbstractCirc>::Id,
570    ) -> Option<&mut OpenEntry<B::Circ>> {
571        self.open_circs.get_mut(id)
572    }
573
574    /// Extract an open circuit by ID, removing it from this list.
575    ///
576    /// Return None if no such circuit exists in this list.
577    fn take_open(&mut self, id: &<B::Circ as AbstractCirc>::Id) -> Option<OpenEntry<B::Circ>> {
578        self.open_circs.remove(id)
579    }
580
581    /// Remove circuits based on expiration times.
582    ///
583    /// We remove every unused circuit that is set to expire by
584    /// `unused_cutoff`, and every dirty circuit that has been dirty
585    /// since before `dirty_cutoff`.
586    fn expire_circs(&mut self, unused_cutoff: Instant, dirty_cutoff: Instant) {
587        self.open_circs
588            .retain(|_k, v| !v.should_expire(unused_cutoff, dirty_cutoff));
589    }
590
591    /// Remove the circuit with given `id`, if it is scheduled to
592    /// expire now, according to the provided expiration times.
593    fn expire_circ(
594        &mut self,
595        id: &<B::Circ as AbstractCirc>::Id,
596        unused_cutoff: Instant,
597        dirty_cutoff: Instant,
598    ) {
599        let should_expire = self
600            .open_circs
601            .get(id)
602            .map(|v| v.should_expire(unused_cutoff, dirty_cutoff))
603            .unwrap_or_else(|| false);
604        if should_expire {
605            self.open_circs.remove(id);
606        }
607    }
608
609    /// Add `pending` to the set of in-progress circuits.
610    fn add_pending_circ(&mut self, pending: Arc<PendingEntry<B, R>>) {
611        self.pending_circs.insert(pending);
612    }
613
614    /// Find all pending circuits that support `usage`.
615    ///
616    /// If no such circuits are currently being built, return None.
617    fn find_pending_circs(&self, usage: &TargetCircUsage) -> Option<Vec<Arc<PendingEntry<B, R>>>> {
618        let result: Vec<_> = self
619            .pending_circs
620            .iter()
621            .filter(|p| p.supports(usage))
622            .filter(|p| !matches!(p.receiver.peek(), Some(Err(_))))
623            .collect();
624
625        if result.is_empty() {
626            None
627        } else {
628            Some(result)
629        }
630    }
631
632    /// Return true if `circ` is still pending.
633    ///
634    /// A circuit will become non-pending when finishes (successfully or not), or when it's
635    /// removed from this list via `clear_all_circuits()`.
636    fn circ_is_pending(&self, circ: &Arc<PendingEntry<B, R>>) -> bool {
637        self.pending_circs.contains(circ)
638    }
639
640    /// Construct and add a new entry to the set of request waiting
641    /// for a circuit.
642    ///
643    /// Return the request, and a new receiver stream that it should
644    /// use for notification of possible circuits to use.
645    fn add_pending_request(&mut self, pending: &Arc<PendingRequest<B, R>>) {
646        self.pending_requests.insert(Arc::clone(pending));
647    }
648
649    /// Return all pending requests that would be satisfied by a circuit
650    /// that supports `circ_spec`.
651    fn find_pending_requests(
652        &self,
653        circ_spec: &SupportedCircUsage,
654    ) -> Vec<Arc<PendingRequest<B, R>>> {
655        self.pending_requests
656            .iter()
657            .filter(|pend| pend.supported_by(circ_spec))
658            .collect()
659    }
660
661    /// Clear all pending circuits and open circuits.
662    ///
663    /// Calling `clear_all_circuits` ensures that any request that is answered _after
664    /// this method runs_ will receive a circuit that was launched _after this
665    /// method runs_.
666    fn clear_all_circuits(&mut self) {
667        // Note that removing entries from pending_circs will also cause the
668        // circuit tasks to realize that they are cancelled when they
669        // go to tell anybody about their results.
670        self.pending_circs.clear();
671        self.open_circs.clear();
672    }
673}
674
675/// Timing information for circuits that have been built but never used.
676///
677/// Currently taken from the network parameters.
678struct UnusedTimings {
679    /// Minimum lifetime of a circuit created while learning
680    /// circuit timeouts.
681    learning: Duration,
682    /// Minimum lifetime of a circuit created while not learning
683    /// circuit timeouts.
684    not_learning: Duration,
685}
686
687// This isn't really fallible, given the definitions of the underlying
688// types.
689#[allow(clippy::fallible_impl_from)]
690impl From<&tor_netdir::params::NetParameters> for UnusedTimings {
691    fn from(v: &tor_netdir::params::NetParameters) -> Self {
692        // These try_into() calls can't fail, so unwrap() can't panic.
693        #[allow(clippy::unwrap_used)]
694        UnusedTimings {
695            learning: v
696                .unused_client_circ_timeout_while_learning_cbt
697                .try_into()
698                .unwrap(),
699            not_learning: v.unused_client_circ_timeout.try_into().unwrap(),
700        }
701    }
702}
703
704/// Abstract implementation for circuit management.
705///
706/// The algorithm provided here is fairly simple. In its simplest form:
707///
708/// When somebody asks for a circuit for a given operation: if we find
709/// one open already, we return it.  If we find in-progress circuits
710/// that would meet our needs, we wait for one to finish (or for all
711/// to fail).  And otherwise, we launch one or more circuits to meet the
712/// request's needs.
713///
714/// If this process fails, then we retry it, up to a timeout or a
715/// numerical limit.
716///
717/// If a circuit not previously considered for a given request
718/// finishes before the request is satisfied, and if the circuit would
719/// satisfy the request, we try to give that circuit as an answer to
720/// that request even if it was not one of the circuits that request
721/// was waiting for.
722pub(crate) struct AbstractCircMgr<B: AbstractCircBuilder<R>, R: Runtime> {
723    /// Builder used to construct circuits.
724    builder: B,
725    /// An asynchronous runtime to use for launching tasks and
726    /// checking timeouts.
727    runtime: R,
728    /// A CircList to manage our list of circuits, requests, and
729    /// pending circuits.
730    circs: sync::Mutex<CircList<B, R>>,
731
732    /// Configured information about when to expire circuits and requests.
733    circuit_timing: MutCfg<CircuitTiming>,
734
735    /// Minimum lifetime of an unused circuit.
736    ///
737    /// Derived from the network parameters.
738    unused_timing: sync::Mutex<UnusedTimings>,
739}
740
741/// An action to take in order to satisfy a request for a circuit.
742enum Action<B: AbstractCircBuilder<R>, R: Runtime> {
743    /// We found an open circuit: return immediately.
744    Open(Arc<B::Circ>),
745    /// We found one or more pending circuits: wait until one succeeds,
746    /// or all fail.
747    Wait(FuturesUnordered<Shared<oneshot::Receiver<PendResult<B, R>>>>),
748    /// We should launch circuits: here are the instructions for how
749    /// to do so.
750    Build(Vec<CircBuildPlan<B, R>>),
751}
752
753impl<B: AbstractCircBuilder<R> + 'static, R: Runtime> AbstractCircMgr<B, R> {
754    /// Construct a new AbstractCircMgr.
755    pub(crate) fn new(builder: B, runtime: R, circuit_timing: CircuitTiming) -> Self {
756        let circs = sync::Mutex::new(CircList::new());
757        let dflt_params = tor_netdir::params::NetParameters::default();
758        let unused_timing = (&dflt_params).into();
759        AbstractCircMgr {
760            builder,
761            runtime,
762            circs,
763            circuit_timing: circuit_timing.into(),
764            unused_timing: sync::Mutex::new(unused_timing),
765        }
766    }
767
768    /// Reconfigure this manager using the latest set of network parameters.
769    pub(crate) fn update_network_parameters(&self, p: &tor_netdir::params::NetParameters) {
770        let mut u = self
771            .unused_timing
772            .lock()
773            .expect("Poisoned lock for unused_timing");
774        *u = p.into();
775    }
776
777    /// Return this manager's [`CircuitTiming`].
778    pub(crate) fn circuit_timing(&self) -> Arc<CircuitTiming> {
779        self.circuit_timing.get()
780    }
781
782    /// Return this manager's [`CircuitTiming`].
783    pub(crate) fn set_circuit_timing(&self, new_config: CircuitTiming) {
784        self.circuit_timing.replace(new_config);
785    }
786    /// Return a circuit suitable for use with a given `usage`,
787    /// creating that circuit if necessary, and restricting it
788    /// under the assumption that it will be used for that spec.
789    ///
790    /// This is the primary entry point for AbstractCircMgr.
791    pub(crate) async fn get_or_launch(
792        self: &Arc<Self>,
793        usage: &TargetCircUsage,
794        dir: DirInfo<'_>,
795    ) -> Result<(Arc<B::Circ>, CircProvenance)> {
796        /// Largest number of "resets" that we will accept in this attempt.
797        ///
798        /// A "reset" is an internally generated error that does not represent a
799        /// real problem; only a "whoops, got to try again" kind of a situation.
800        /// For example, if we reconfigure in the middle of an attempt and need
801        /// to re-launch the circuit, that counts as a "reset", since there was
802        /// nothing actually _wrong_ with the circuit we were building.
803        ///
804        /// We accept more resets than we do real failures. However,
805        /// we don't accept an unlimited number: we don't want to inadvertently
806        /// permit infinite loops here. If we ever bump against this limit, we
807        /// should not automatically increase it: we should instead figure out
808        /// why it is happening and try to make it not happen.
809        const MAX_RESETS: usize = 8;
810
811        let circuit_timing = self.circuit_timing();
812        let timeout_at = self.runtime.now() + circuit_timing.request_timeout;
813        let max_tries = circuit_timing.request_max_retries;
814        // We compute the maximum number of failures by dividing the maximum
815        // number of circuits to attempt by the number that will be launched in
816        // parallel for each iteration.
817        let max_failures = usize::div_ceil(
818            max_tries as usize,
819            std::cmp::max(1, self.builder.launch_parallelism(usage)),
820        );
821
822        let mut retry_schedule = RetryDelay::from_msec(100);
823        let mut retry_err = RetryError::<Box<Error>>::in_attempt_to("find or build a circuit");
824
825        let mut n_failures = 0;
826        let mut n_resets = 0;
827
828        for attempt_num in 1.. {
829            // How much time is remaining?
830            let remaining = match timeout_at.checked_duration_since(self.runtime.now()) {
831                None => {
832                    retry_err.push(Error::RequestTimeout);
833                    break;
834                }
835                Some(t) => t,
836            };
837
838            let error = match self.prepare_action(usage, dir, true) {
839                Ok(action) => {
840                    // We successfully found an action: Take that action.
841                    let outcome = self
842                        .runtime
843                        .timeout(remaining, Arc::clone(self).take_action(action, usage))
844                        .await;
845
846                    match outcome {
847                        Ok(Ok(circ)) => return Ok(circ),
848                        Ok(Err(e)) => {
849                            debug!("Circuit attempt {} failed.", attempt_num);
850                            Error::RequestFailed(e)
851                        }
852                        Err(_) => {
853                            // We ran out of "remaining" time; there is nothing
854                            // more to be done.
855                            warn!("All circuit attempts failed due to timeout");
856                            retry_err.push(Error::RequestTimeout);
857                            break;
858                        }
859                    }
860                }
861                Err(e) => {
862                    // We couldn't pick the action!
863                    debug_report!(
864                        &e,
865                        "Couldn't pick action for circuit attempt {}",
866                        attempt_num,
867                    );
868                    e
869                }
870            };
871
872            // There's been an error.  See how long we wait before we retry.
873            let now = self.runtime.now();
874            let retry_time =
875                error.abs_retry_time(now, || retry_schedule.next_delay(&mut rand::rng()));
876
877            let (count, count_limit) = if error.is_internal_reset() {
878                (&mut n_resets, MAX_RESETS)
879            } else {
880                (&mut n_failures, max_failures)
881            };
882            // Record the error, flattening it if needed.
883            match error {
884                Error::RequestFailed(e) => retry_err.extend(e),
885                e => retry_err.push(e),
886            }
887
888            *count += 1;
889            // If we have reached our limit of this kind of problem, we're done.
890            if *count >= count_limit {
891                warn!("Reached circuit build retry limit, exiting...");
892                break;
893            }
894
895            // Wait, or not, as appropriate.
896            match retry_time {
897                AbsRetryTime::Immediate => {}
898                AbsRetryTime::Never => break,
899                AbsRetryTime::At(t) => {
900                    let remaining = timeout_at.saturating_duration_since(now);
901                    let delay = t.saturating_duration_since(now);
902                    self.runtime.sleep(std::cmp::min(delay, remaining)).await;
903                }
904            }
905        }
906
907        warn!("Request failed");
908        Err(Error::RequestFailed(retry_err))
909    }
910
911    /// Make sure a circuit exists, without actually asking for it.
912    ///
913    /// Make sure that there is a circuit (built or in-progress) that could be
914    /// used for `usage`, and launch one or more circuits in a background task
915    /// if there is not.
916    // TODO: This should probably take some kind of parallelism parameter.
917    #[allow(dead_code)]
918    pub(crate) async fn ensure_circuit(
919        self: &Arc<Self>,
920        usage: &TargetCircUsage,
921        dir: DirInfo<'_>,
922    ) -> Result<()> {
923        let action = self.prepare_action(usage, dir, false)?;
924        if let Action::Build(plans) = action {
925            for plan in plans {
926                let self_clone = Arc::clone(self);
927                let _ignore_receiver = self_clone.spawn_launch(usage, plan);
928            }
929        }
930
931        Ok(())
932    }
933
934    /// Choose which action we should take in order to provide a circuit
935    /// for a given `usage`.
936    ///
937    /// If `restrict_circ` is true, we restrict the spec of any
938    /// circ we decide to use to mark that it _is_ being used for
939    /// `usage`.
940    fn prepare_action(
941        &self,
942        usage: &TargetCircUsage,
943        dir: DirInfo<'_>,
944        restrict_circ: bool,
945    ) -> Result<Action<B, R>> {
946        let mut list = self.circs.lock().expect("poisoned lock");
947
948        if let Some(mut open) = list.find_open(usage) {
949            // We have open circuits that meet the spec: return the best one.
950            let parallelism = self.builder.select_parallelism(usage);
951            let best = OpenEntry::find_best(&mut open, usage, parallelism);
952            if restrict_circ {
953                let now = self.runtime.now();
954                best.restrict_mut(usage, now)?;
955            }
956            // TODO: If we have fewer circuits here than our select
957            // parallelism, perhaps we should launch more?
958
959            return Ok(Action::Open(best.circ.clone()));
960        }
961
962        if let Some(pending) = list.find_pending_circs(usage) {
963            // There are pending circuits that could meet the spec.
964            // Restrict them under the assumption that they could all
965            // be used for this, and then wait until one is ready (or
966            // all have failed)
967            let best = PendingEntry::find_best(&pending, usage);
968            if restrict_circ {
969                for item in &best {
970                    // TODO: Do we want to tentatively restrict _all_ of these?
971                    // not clear to me.
972                    item.tentative_restrict_mut(usage)?;
973                }
974            }
975            let stream = best.iter().map(|item| item.receiver.clone()).collect();
976            // TODO: if we have fewer circuits here than our launch
977            // parallelism, we might want to launch more.
978
979            return Ok(Action::Wait(stream));
980        }
981
982        // Okay, we need to launch circuits here.
983        let parallelism = std::cmp::max(1, self.builder.launch_parallelism(usage));
984        let mut plans = Vec::new();
985        let mut last_err = None;
986        for _ in 0..parallelism {
987            match self.plan_by_usage(dir, usage) {
988                Ok((pending, plan)) => {
989                    list.add_pending_circ(pending);
990                    plans.push(plan);
991                }
992                Err(e) => {
993                    debug!("Unable to make a plan for {:?}: {}", usage, e);
994                    last_err = Some(e);
995                }
996            }
997        }
998        if !plans.is_empty() {
999            Ok(Action::Build(plans))
1000        } else if let Some(last_err) = last_err {
1001            Err(last_err)
1002        } else {
1003            // we didn't even try to plan anything!
1004            Err(internal!("no plans were built, but no errors were found").into())
1005        }
1006    }
1007
1008    /// Execute an action returned by pick-action, and return the
1009    /// resulting circuit or error.
1010    async fn take_action(
1011        self: Arc<Self>,
1012        act: Action<B, R>,
1013        usage: &TargetCircUsage,
1014    ) -> std::result::Result<(Arc<B::Circ>, CircProvenance), RetryError<Box<Error>>> {
1015        /// Store the error `err` into `retry_err`, as appropriate.
1016        fn record_error(
1017            retry_err: &mut RetryError<Box<Error>>,
1018            source: streams::Source,
1019            building: bool,
1020            mut err: Error,
1021        ) {
1022            if source == streams::Source::Right {
1023                // We don't care about this error, since it is from neither a circuit we launched
1024                // nor one that we're waiting on.
1025                return;
1026            }
1027            if !building {
1028                // We aren't building our own circuits, so our errors are
1029                // secondary reports of other circuits' failures.
1030                err = Error::PendingFailed(Box::new(err));
1031            }
1032            retry_err.push(err);
1033        }
1034        /// Return a string describing what it means, within the context of this
1035        /// function, to have gotten an answer from `source`.
1036        fn describe_source(building: bool, source: streams::Source) -> &'static str {
1037            match (building, source) {
1038                (_, streams::Source::Right) => "optimistic advice",
1039                (true, streams::Source::Left) => "circuit we're building",
1040                (false, streams::Source::Left) => "pending circuit",
1041            }
1042        }
1043
1044        // Get or make a stream of futures to wait on.
1045        let (building, wait_on_stream) = match act {
1046            Action::Open(c) => {
1047                // There's already a perfectly good open circuit; we can return
1048                // it now.
1049                return Ok((c, CircProvenance::Preexisting));
1050            }
1051            Action::Wait(f) => {
1052                // There is one or more pending circuit that we're waiting for.
1053                // If any succeeds, we try to use it.  If they all fail, we
1054                // fail.
1055                (false, f)
1056            }
1057            Action::Build(plans) => {
1058                // We're going to launch one or more circuits in parallel.  We
1059                // report success if any succeeds, and failure of they all fail.
1060                let futures = FuturesUnordered::new();
1061                for plan in plans {
1062                    let self_clone = Arc::clone(&self);
1063                    // (This is where we actually launch circuits.)
1064                    futures.push(self_clone.spawn_launch(usage, plan));
1065                }
1066                (true, futures)
1067            }
1068        };
1069
1070        // Insert ourself into the list of pending requests, and make a
1071        // stream for us to listen on for notification from pending circuits
1072        // other than those we are pending on.
1073        let (pending_request, additional_stream) = {
1074            // We don't want this queue to participate in memory quota tracking.
1075            // There isn't any circuit yet, so there wouldn't be anything to account it to.
1076            // If this queue has the oldest data, probably the whole system is badly broken.
1077            // Tearing down the whole circuit manager won't help.
1078            let (send, recv) = mpsc_channel_no_memquota(8);
1079            let pending = Arc::new(PendingRequest {
1080                usage: usage.clone(),
1081                notify: send,
1082            });
1083
1084            let mut list = self.circs.lock().expect("poisoned lock");
1085            list.add_pending_request(&pending);
1086
1087            (pending, recv)
1088        };
1089
1090        // We use our "select_biased" stream combiner here to ensure that:
1091        //   1) Circuits from wait_on_stream (the ones we're pending on) are
1092        //      preferred.
1093        //   2) We exit this function when those circuits are exhausted.
1094        //   3) We still get notified about other circuits that might meet our
1095        //      interests.
1096        //
1097        // The events from Left stream are the oes that we explicitly asked for,
1098        // so we'll treat errors there as real problems.  The events from the
1099        // Right stream are ones that we got opportunistically told about; it's
1100        // not a big deal if those fail.
1101        let mut incoming = streams::select_biased(wait_on_stream, additional_stream.map(Ok));
1102
1103        let mut retry_error = RetryError::in_attempt_to("wait for circuits");
1104
1105        while let Some((src, id)) = incoming.next().await {
1106            match id {
1107                Ok(Ok(ref id)) => {
1108                    // Great, we have a circuit. See if we can use it!
1109                    let mut list = self.circs.lock().expect("poisoned lock");
1110                    if let Some(ent) = list.get_open_mut(id) {
1111                        let now = self.runtime.now();
1112                        match ent.restrict_mut(usage, now) {
1113                            Ok(()) => {
1114                                // Great, this will work.  We drop the
1115                                // pending request now explicitly to remove
1116                                // it from the list.
1117                                drop(pending_request);
1118                                if matches!(ent.expiration, ExpirationInfo::Unused { .. }) {
1119                                    // Since this circuit hasn't been used yet, schedule expiration task after `max_dirtiness` from now.
1120                                    spawn_expiration_task(
1121                                        &self.runtime,
1122                                        Arc::downgrade(&self),
1123                                        ent.circ.id(),
1124                                        now + self.circuit_timing().max_dirtiness,
1125                                    );
1126                                }
1127                                return Ok((ent.circ.clone(), CircProvenance::NewlyCreated));
1128                            }
1129                            Err(e) => {
1130                                // In this case, a `UsageMismatched` error just means that we lost the race
1131                                // to restrict this circuit.
1132                                let e = match e {
1133                                    Error::UsageMismatched(e) => Error::LostUsabilityRace(e),
1134                                    x => x,
1135                                };
1136                                if src == streams::Source::Left {
1137                                    info_report!(
1138                                        &e,
1139                                        "{} suggested we use {:?}, but restrictions failed",
1140                                        describe_source(building, src),
1141                                        id,
1142                                    );
1143                                } else {
1144                                    debug_report!(
1145                                        &e,
1146                                        "{} suggested we use {:?}, but restrictions failed",
1147                                        describe_source(building, src),
1148                                        id,
1149                                    );
1150                                }
1151                                record_error(&mut retry_error, src, building, e);
1152                                continue;
1153                            }
1154                        }
1155                    }
1156                }
1157                Ok(Err(ref e)) => {
1158                    debug!("{} sent error {:?}", describe_source(building, src), e);
1159                    record_error(&mut retry_error, src, building, e.clone());
1160                }
1161                Err(oneshot::Canceled) => {
1162                    debug!(
1163                        "{} went away (Canceled), quitting take_action right away",
1164                        describe_source(building, src)
1165                    );
1166                    record_error(&mut retry_error, src, building, Error::PendingCanceled);
1167                    return Err(retry_error);
1168                }
1169            }
1170
1171            debug!(
1172                "While waiting on circuit: {:?} from {}",
1173                id,
1174                describe_source(building, src)
1175            );
1176        }
1177
1178        // Nothing worked.  We drop the pending request now explicitly
1179        // to remove it from the list.  (We could just let it get dropped
1180        // implicitly, but that's a bit confusing.)
1181        drop(pending_request);
1182
1183        Err(retry_error)
1184    }
1185
1186    /// Given a directory and usage, compute the necessary objects to
1187    /// build a circuit: A [`PendingEntry`] to keep track of the in-process
1188    /// circuit, and a [`CircBuildPlan`] that we'll give to the thread
1189    /// that will build the circuit.
1190    ///
1191    /// The caller should probably add the resulting `PendingEntry` to
1192    /// `self.circs`.
1193    ///
1194    /// This is an internal function that we call when we're pretty sure
1195    /// we want to build a circuit.
1196    #[allow(clippy::type_complexity)]
1197    fn plan_by_usage(
1198        &self,
1199        dir: DirInfo<'_>,
1200        usage: &TargetCircUsage,
1201    ) -> Result<(Arc<PendingEntry<B, R>>, CircBuildPlan<B, R>)> {
1202        let (plan, bspec) = self.builder.plan_circuit(usage, dir)?;
1203        let (pending, sender) = PendingEntry::new(&bspec);
1204        let pending = Arc::new(pending);
1205
1206        let plan = CircBuildPlan {
1207            plan,
1208            sender,
1209            pending: Arc::clone(&pending),
1210        };
1211
1212        Ok((pending, plan))
1213    }
1214
1215    /// Launch a managed circuit for a target usage, without checking
1216    /// whether one already exists or is pending.
1217    ///
1218    /// Return a listener that will be informed when the circuit is done.
1219    pub(crate) fn launch_by_usage(
1220        self: &Arc<Self>,
1221        usage: &TargetCircUsage,
1222        dir: DirInfo<'_>,
1223    ) -> Result<Shared<oneshot::Receiver<PendResult<B, R>>>> {
1224        let (pending, plan) = self.plan_by_usage(dir, usage)?;
1225
1226        self.circs
1227            .lock()
1228            .expect("Poisoned lock for circuit list")
1229            .add_pending_circ(pending);
1230
1231        Ok(Arc::clone(self).spawn_launch(usage, plan))
1232    }
1233
1234    /// Spawn a background task to launch a circuit, and report its status.
1235    ///
1236    /// The `usage` argument is the usage from the original request that made
1237    /// us build this circuit.
1238    fn spawn_launch(
1239        self: Arc<Self>,
1240        usage: &TargetCircUsage,
1241        plan: CircBuildPlan<B, R>,
1242    ) -> Shared<oneshot::Receiver<PendResult<B, R>>> {
1243        let _ = usage; // Currently unused.
1244        let CircBuildPlan {
1245            mut plan,
1246            sender,
1247            pending,
1248        } = plan;
1249        let request_loyalty = self.circuit_timing().request_loyalty;
1250
1251        let wait_on_future = pending.receiver.clone();
1252        let runtime = self.runtime.clone();
1253        let runtime_copy = self.runtime.clone();
1254
1255        let tid = rand::random::<u64>();
1256        // We release this block when the circuit builder task terminates.
1257        let reason = format!("circuit builder task {}", tid);
1258        runtime.block_advance(reason.clone());
1259        // During tests, the `FakeBuilder` will need to release the block in order to fake a timeout
1260        // correctly.
1261        plan.add_blocked_advance_reason(reason);
1262
1263        runtime
1264            .spawn(async move {
1265                let self_clone = Arc::clone(&self);
1266                let future = AssertUnwindSafe(self_clone.do_launch(plan, pending)).catch_unwind();
1267                let (new_spec, reply) = match future.await {
1268                    Ok(x) => x, // Success or regular failure
1269                    Err(e) => {
1270                        // Okay, this is a panic.  We have to tell the calling
1271                        // thread about it, then exit this circuit builder task.
1272                        let _ = sender.send(Err(internal!("circuit build task panicked").into()));
1273                        std::panic::panic_any(e);
1274                    }
1275                };
1276
1277                // Tell anybody who was listening about it that this
1278                // circuit is now usable or failed.
1279                //
1280                // (We ignore any errors from `send`: That just means that nobody
1281                // was waiting for this circuit.)
1282                let _ = sender.send(reply.clone());
1283
1284                if let Some(new_spec) = new_spec {
1285                    // Wait briefly before we notify opportunistically.  This
1286                    // delay will give the circuits that were originally
1287                    // specifically intended for a request a little more time
1288                    // to finish, before we offer it this circuit instead.
1289                    let sl = runtime_copy.sleep(request_loyalty);
1290                    runtime_copy.allow_one_advance(request_loyalty);
1291                    sl.await;
1292
1293                    let pending = {
1294                        let list = self.circs.lock().expect("poisoned lock");
1295                        list.find_pending_requests(&new_spec)
1296                    };
1297                    for pending_request in pending {
1298                        let _ = pending_request.notify.clone().try_send(reply.clone());
1299                    }
1300                }
1301                runtime_copy.release_advance(format!("circuit builder task {}", tid));
1302            })
1303            .expect("Couldn't spawn circuit-building task");
1304
1305        wait_on_future
1306    }
1307
1308    /// Run in the background to launch a circuit. Return a 2-tuple of the new
1309    /// circuit spec and the outcome that should be sent to the initiator.
1310    async fn do_launch(
1311        self: Arc<Self>,
1312        plan: <B as AbstractCircBuilder<R>>::Plan,
1313        pending: Arc<PendingEntry<B, R>>,
1314    ) -> (Option<SupportedCircUsage>, PendResult<B, R>) {
1315        let outcome = self.builder.build_circuit(plan).await;
1316
1317        match outcome {
1318            Err(e) => (None, Err(e)),
1319            Ok((new_spec, circ)) => {
1320                let id = circ.id();
1321
1322                let use_duration = self.pick_use_duration();
1323                let exp_inst = self.runtime.now() + use_duration;
1324                let runtime_copy = self.runtime.clone();
1325                spawn_expiration_task(&runtime_copy, Arc::downgrade(&self), circ.id(), exp_inst);
1326                // I used to call restrict_mut here, but now I'm not so
1327                // sure. Doing restrict_mut makes sure that this
1328                // circuit will be suitable for the request that asked
1329                // for us in the first place, but that should be
1330                // ensured anyway by our tracking its tentative
1331                // assignment.
1332                //
1333                // new_spec.restrict_mut(&usage_copy).unwrap();
1334                let use_before = ExpirationInfo::new(exp_inst);
1335                let open_ent = OpenEntry::new(new_spec.clone(), circ, use_before);
1336                {
1337                    let mut list = self.circs.lock().expect("poisoned lock");
1338                    // Finally, before we return this circuit, we need to make
1339                    // sure that this pending circuit is still pending.  (If it
1340                    // is not pending, then it was cancelled through a call to
1341                    // `retire_all_circuits`, and the configuration that we used
1342                    // to launch it is now sufficiently outdated that we should
1343                    // no longer give this circuit to a client.)
1344                    if list.circ_is_pending(&pending) {
1345                        list.add_open(open_ent);
1346                        // We drop our reference to 'pending' here:
1347                        // this should make all the weak references to
1348                        // the `PendingEntry` become dangling.
1349                        drop(pending);
1350                        (Some(new_spec), Ok(id))
1351                    } else {
1352                        // This circuit is no longer pending! It must have been cancelled, probably
1353                        // by a call to retire_all_circuits()
1354                        drop(pending); // ibid
1355                        (None, Err(Error::CircCanceled))
1356                    }
1357                }
1358            }
1359        }
1360    }
1361
1362    /// Plan and launch a new circuit to a given target, bypassing our managed
1363    /// pool of circuits.
1364    ///
1365    /// This method will always return a new circuit, and never return a circuit
1366    /// that this CircMgr gives out for anything else.
1367    ///
1368    /// The new circuit will participate in the guard and timeout apparatus as
1369    /// appropriate, no retry attempt will be made if the circuit fails.
1370    #[cfg(feature = "hs-common")]
1371    pub(crate) async fn launch_unmanaged(
1372        &self,
1373        usage: &TargetCircUsage,
1374        dir: DirInfo<'_>,
1375    ) -> Result<(SupportedCircUsage, Arc<B::Circ>)> {
1376        let (_, plan) = self.plan_by_usage(dir, usage)?;
1377        self.builder.build_circuit(plan.plan).await
1378    }
1379
1380    /// Remove the circuit with a given `id` from this manager.
1381    ///
1382    /// After this function is called, that circuit will no longer be handed
1383    /// out to any future requests.
1384    ///
1385    /// Return None if we have no circuit with the given ID.
1386    pub(crate) fn take_circ(&self, id: &<B::Circ as AbstractCirc>::Id) -> Option<Arc<B::Circ>> {
1387        let mut list = self.circs.lock().expect("poisoned lock");
1388        list.take_open(id).map(|e| e.circ)
1389    }
1390
1391    /// Remove all open and pending circuits and from this manager, to ensure
1392    /// they can't be given out for any more requests.
1393    ///
1394    /// Calling `retire_all_circuits` ensures that any circuit request that gets
1395    /// an  answer _after this method runs_ will receive a circuit that was
1396    /// launched _after this method runs_.
1397    ///
1398    /// We call this method this when our configuration changes in such a way
1399    /// that we want to make sure that any new (or pending) requests will
1400    /// receive circuits that are built using the new configuration.
1401    //
1402    // For more information, see documentation on [`CircuitList::open_circs`],
1403    // [`CircuitList::pending_circs`], and comments in `do_launch`.
1404    pub(crate) fn retire_all_circuits(&self) {
1405        let mut list = self.circs.lock().expect("poisoned lock");
1406        list.clear_all_circuits();
1407    }
1408
1409    /// Expire circuits according to the rules in `config` and the
1410    /// current time `now`.
1411    ///
1412    /// Expired circuits will not be automatically closed, but they will
1413    /// no longer be given out for new circuits.
1414    pub(crate) fn expire_circs(&self, now: Instant) {
1415        let mut list = self.circs.lock().expect("poisoned lock");
1416        if let Some(dirty_cutoff) = now.checked_sub(self.circuit_timing().max_dirtiness) {
1417            list.expire_circs(now, dirty_cutoff);
1418        }
1419    }
1420
1421    /// Consider expiring the circuit with given circuit `id`,
1422    /// according to the rules in `config` and the current time `now`.
1423    pub(crate) fn expire_circ(&self, circ_id: &<B::Circ as AbstractCirc>::Id, now: Instant) {
1424        let mut list = self.circs.lock().expect("poisoned lock");
1425        if let Some(dirty_cutoff) = now.checked_sub(self.circuit_timing().max_dirtiness) {
1426            list.expire_circ(circ_id, now, dirty_cutoff);
1427        }
1428    }
1429
1430    /// Return the number of open circuits held by this circuit manager.
1431    pub(crate) fn n_circs(&self) -> usize {
1432        let list = self.circs.lock().expect("poisoned lock");
1433        list.open_circs.len()
1434    }
1435
1436    /// Return the number of pending circuits tracked by this circuit manager.
1437    #[cfg(test)]
1438    pub(crate) fn n_pending_circs(&self) -> usize {
1439        let list = self.circs.lock().expect("poisoned lock");
1440        list.pending_circs.len()
1441    }
1442
1443    /// Get a reference to this manager's runtime.
1444    pub(crate) fn peek_runtime(&self) -> &R {
1445        &self.runtime
1446    }
1447
1448    /// Get a reference to this manager's builder.
1449    pub(crate) fn peek_builder(&self) -> &B {
1450        &self.builder
1451    }
1452
1453    /// Pick a duration by when a new circuit should expire from now
1454    /// if it has not yet been used
1455    fn pick_use_duration(&self) -> Duration {
1456        let timings = self
1457            .unused_timing
1458            .lock()
1459            .expect("Poisoned lock for unused_timing");
1460
1461        if self.builder.learning_timeouts() {
1462            timings.learning
1463        } else {
1464            // TODO: In Tor, this calculation also depends on
1465            // stuff related to predicted ports and channel
1466            // padding.
1467            use tor_basic_utils::RngExt as _;
1468            let mut rng = rand::rng();
1469            rng.gen_range_checked(timings.not_learning..=timings.not_learning * 2)
1470                .expect("T .. 2x T turned out to be an empty duration range?!")
1471        }
1472    }
1473}
1474
1475/// Spawn an expiration task that expires a circuit at given instant.
1476///
1477/// If given instant is earlier than now, expire the circuit immediately.
1478/// Otherwise, spawn a timer expiration task on given runtime.
1479///
1480/// When the timeout occurs, if the circuit manager is still present,
1481/// the task will ask the manager to expire the circuit, if the circuit
1482/// is ready to expire.
1483fn spawn_expiration_task<B, R>(
1484    runtime: &R,
1485    circmgr: Weak<AbstractCircMgr<B, R>>,
1486    circ_id: <<B as AbstractCircBuilder<R>>::Circ as AbstractCirc>::Id,
1487    exp_inst: Instant,
1488) where
1489    R: Runtime,
1490    B: 'static + AbstractCircBuilder<R>,
1491{
1492    let now = runtime.now();
1493    let rt_copy = runtime.clone();
1494    let duration = exp_inst.saturating_duration_since(now);
1495
1496    if duration == Duration::ZERO {
1497        // Circuit should already expire. Expire it now.
1498        let cm = if let Some(cm) = Weak::upgrade(&circmgr) {
1499            cm
1500        } else {
1501            // Circuits manager has already been dropped, so are the references it held.
1502            return;
1503        };
1504        cm.expire_circ(&circ_id, now);
1505    } else {
1506        // Spawn a timer expiration task with given expiration instant.
1507        if let Err(e) = runtime.spawn(async move {
1508            rt_copy.sleep(duration).await;
1509            let cm = if let Some(cm) = Weak::upgrade(&circmgr) {
1510                cm
1511            } else {
1512                return;
1513            };
1514            cm.expire_circ(&circ_id, exp_inst);
1515        }) {
1516            warn_report!(e, "Unable to launch expiration task");
1517        }
1518    }
1519}
1520
1521#[cfg(test)]
1522mod test {
1523    // @@ begin test lint list maintained by maint/add_warning @@
1524    #![allow(clippy::bool_assert_comparison)]
1525    #![allow(clippy::clone_on_copy)]
1526    #![allow(clippy::dbg_macro)]
1527    #![allow(clippy::mixed_attributes_style)]
1528    #![allow(clippy::print_stderr)]
1529    #![allow(clippy::print_stdout)]
1530    #![allow(clippy::single_char_pattern)]
1531    #![allow(clippy::unwrap_used)]
1532    #![allow(clippy::unchecked_duration_subtraction)]
1533    #![allow(clippy::useless_vec)]
1534    #![allow(clippy::needless_pass_by_value)]
1535    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
1536    use super::*;
1537    use crate::isolation::test::{assert_isoleq, IsolationTokenEq};
1538    use crate::mocks::{FakeBuilder, FakeCirc, FakeId, FakeOp};
1539    use crate::usage::{ExitPolicy, SupportedCircUsage};
1540    use crate::{Error, IsolationToken, StreamIsolation, TargetCircUsage, TargetPort, TargetPorts};
1541    use once_cell::sync::Lazy;
1542    use tor_guardmgr::fallback::FallbackList;
1543    use tor_guardmgr::TestConfig;
1544    use tor_llcrypto::pk::ed25519::Ed25519Identity;
1545    use tor_netdir::testnet;
1546    use tor_persist::TestingStateMgr;
1547    use tor_rtcompat::SleepProvider;
1548    use tor_rtmock::MockRuntime;
1549
1550    #[allow(deprecated)] // TODO #1885
1551    use tor_rtmock::MockSleepRuntime;
1552
1553    static FALLBACKS_EMPTY: Lazy<FallbackList> = Lazy::new(|| [].into());
1554
1555    fn di() -> DirInfo<'static> {
1556        (&*FALLBACKS_EMPTY).into()
1557    }
1558
1559    fn target_to_spec(target: &TargetCircUsage) -> SupportedCircUsage {
1560        match target {
1561            TargetCircUsage::Exit {
1562                ports,
1563                isolation,
1564                country_code,
1565                require_stability,
1566            } => SupportedCircUsage::Exit {
1567                policy: ExitPolicy::from_target_ports(&TargetPorts::from(&ports[..])),
1568                isolation: Some(isolation.clone()),
1569                country_code: country_code.clone(),
1570                all_relays_stable: *require_stability,
1571            },
1572            _ => unimplemented!(),
1573        }
1574    }
1575
1576    impl<U: PartialEq> IsolationTokenEq for OpenEntry<U> {
1577        fn isol_eq(&self, other: &Self) -> bool {
1578            self.spec.isol_eq(&other.spec)
1579                && self.circ == other.circ
1580                && self.expiration == other.expiration
1581        }
1582    }
1583
1584    impl<U: PartialEq> IsolationTokenEq for &mut OpenEntry<U> {
1585        fn isol_eq(&self, other: &Self) -> bool {
1586            self.spec.isol_eq(&other.spec)
1587                && self.circ == other.circ
1588                && self.expiration == other.expiration
1589        }
1590    }
1591
1592    fn make_builder<R: Runtime>(runtime: &R) -> FakeBuilder<R> {
1593        let state_mgr = TestingStateMgr::new();
1594        let guard_config = TestConfig::default();
1595        FakeBuilder::new(runtime, state_mgr, &guard_config)
1596    }
1597
1598    #[test]
1599    fn basic_tests() {
1600        MockRuntime::test_with_various(|rt| async move {
1601            #[allow(deprecated)] // TODO #1885
1602            let rt = MockSleepRuntime::new(rt);
1603
1604            let builder = make_builder(&rt);
1605
1606            let mgr = Arc::new(AbstractCircMgr::new(
1607                builder,
1608                rt.clone(),
1609                CircuitTiming::default(),
1610            ));
1611
1612            let webports = TargetCircUsage::new_from_ipv4_ports(&[80, 443]);
1613
1614            // Check initialization.
1615            assert_eq!(mgr.n_circs(), 0);
1616            assert!(mgr.peek_builder().script.lock().unwrap().is_empty());
1617
1618            // Launch a circuit; make sure we get it.
1619            let c1 = rt.wait_for(mgr.get_or_launch(&webports, di())).await;
1620            let c1 = c1.unwrap().0;
1621            assert_eq!(mgr.n_circs(), 1);
1622
1623            // Make sure we get the one we already made if we ask for it.
1624            let port80 = TargetCircUsage::new_from_ipv4_ports(&[80]);
1625            let c2 = mgr.get_or_launch(&port80, di()).await;
1626
1627            let c2 = c2.unwrap().0;
1628            assert!(FakeCirc::eq(&c1, &c2));
1629            assert_eq!(mgr.n_circs(), 1);
1630
1631            // Now try launching two circuits "at once" to make sure that our
1632            // pending-circuit code works.
1633
1634            let dnsport = TargetCircUsage::new_from_ipv4_ports(&[53]);
1635            let dnsport_restrict = TargetCircUsage::Exit {
1636                ports: vec![TargetPort::ipv4(53)],
1637                isolation: StreamIsolation::builder().build().unwrap(),
1638                country_code: None,
1639                require_stability: false,
1640            };
1641
1642            let (c3, c4) = rt
1643                .wait_for(futures::future::join(
1644                    mgr.get_or_launch(&dnsport, di()),
1645                    mgr.get_or_launch(&dnsport_restrict, di()),
1646                ))
1647                .await;
1648
1649            let c3 = c3.unwrap().0;
1650            let c4 = c4.unwrap().0;
1651            assert!(!FakeCirc::eq(&c1, &c3));
1652            assert!(FakeCirc::eq(&c3, &c4));
1653            assert_eq!(c3.id(), c4.id());
1654            assert_eq!(mgr.n_circs(), 2);
1655
1656            // Now we're going to remove c3 from consideration.  It's the
1657            // same as c4, so removing c4 will give us None.
1658            let c3_taken = mgr.take_circ(&c3.id()).unwrap();
1659            let now_its_gone = mgr.take_circ(&c4.id());
1660            assert!(FakeCirc::eq(&c3_taken, &c3));
1661            assert!(now_its_gone.is_none());
1662            assert_eq!(mgr.n_circs(), 1);
1663
1664            // Having removed them, let's launch another dnsport and make
1665            // sure we get a different circuit.
1666            let c5 = rt.wait_for(mgr.get_or_launch(&dnsport, di())).await;
1667            let c5 = c5.unwrap().0;
1668            assert!(!FakeCirc::eq(&c3, &c5));
1669            assert!(!FakeCirc::eq(&c4, &c5));
1670            assert_eq!(mgr.n_circs(), 2);
1671
1672            // Now try launch_by_usage.
1673            let prev = mgr.n_pending_circs();
1674            assert!(mgr.launch_by_usage(&dnsport, di()).is_ok());
1675            assert_eq!(mgr.n_pending_circs(), prev + 1);
1676            // TODO: Actually make sure that launch_by_usage launched
1677            // the right thing.
1678        });
1679    }
1680
1681    #[test]
1682    fn request_timeout() {
1683        MockRuntime::test_with_various(|rt| async move {
1684            #[allow(deprecated)] // TODO #1885
1685            let rt = MockSleepRuntime::new(rt);
1686
1687            let ports = TargetCircUsage::new_from_ipv4_ports(&[80, 443]);
1688
1689            // This will fail once, and then completely time out.  The
1690            // result will be a failure.
1691            let builder = make_builder(&rt);
1692            builder.set(&ports, vec![FakeOp::Fail, FakeOp::Timeout]);
1693
1694            let mgr = Arc::new(AbstractCircMgr::new(
1695                builder,
1696                rt.clone(),
1697                CircuitTiming::default(),
1698            ));
1699            let c1 = mgr
1700                .peek_runtime()
1701                .wait_for(mgr.get_or_launch(&ports, di()))
1702                .await;
1703
1704            assert!(matches!(c1, Err(Error::RequestFailed(_))));
1705        });
1706    }
1707
1708    #[test]
1709    fn request_timeout2() {
1710        MockRuntime::test_with_various(|rt| async move {
1711            #[allow(deprecated)] // TODO #1885
1712            let rt = MockSleepRuntime::new(rt);
1713
1714            // Now try a more complicated case: we'll try to get things so
1715            // that we wait for a little over our predicted time because
1716            // of our wait-for-next-action logic.
1717            let ports = TargetCircUsage::new_from_ipv4_ports(&[80, 443]);
1718            let builder = make_builder(&rt);
1719            builder.set(
1720                &ports,
1721                vec![
1722                    FakeOp::Delay(Duration::from_millis(60_000 - 25)),
1723                    FakeOp::NoPlan,
1724                ],
1725            );
1726
1727            let mgr = Arc::new(AbstractCircMgr::new(
1728                builder,
1729                rt.clone(),
1730                CircuitTiming::default(),
1731            ));
1732            let c1 = mgr
1733                .peek_runtime()
1734                .wait_for(mgr.get_or_launch(&ports, di()))
1735                .await;
1736
1737            assert!(matches!(c1, Err(Error::RequestFailed(_))));
1738        });
1739    }
1740
1741    #[test]
1742    fn request_unplannable() {
1743        MockRuntime::test_with_various(|rt| async move {
1744            #[allow(deprecated)] // TODO #1885
1745            let rt = MockSleepRuntime::new(rt);
1746
1747            let ports = TargetCircUsage::new_from_ipv4_ports(&[80, 443]);
1748
1749            // This will fail a the planning stages, a lot.
1750            let builder = make_builder(&rt);
1751            builder.set(&ports, vec![FakeOp::NoPlan; 2000]);
1752
1753            let mgr = Arc::new(AbstractCircMgr::new(
1754                builder,
1755                rt.clone(),
1756                CircuitTiming::default(),
1757            ));
1758            let c1 = rt.wait_for(mgr.get_or_launch(&ports, di())).await;
1759
1760            assert!(matches!(c1, Err(Error::RequestFailed(_))));
1761        });
1762    }
1763
1764    #[test]
1765    fn request_fails_too_much() {
1766        MockRuntime::test_with_various(|rt| async move {
1767            #[allow(deprecated)] // TODO #1885
1768            let rt = MockSleepRuntime::new(rt);
1769            let ports = TargetCircUsage::new_from_ipv4_ports(&[80, 443]);
1770
1771            // This will fail 1000 times, which is above the retry limit.
1772            let builder = make_builder(&rt);
1773            builder.set(&ports, vec![FakeOp::Fail; 1000]);
1774
1775            let mgr = Arc::new(AbstractCircMgr::new(
1776                builder,
1777                rt.clone(),
1778                CircuitTiming::default(),
1779            ));
1780            let c1 = rt.wait_for(mgr.get_or_launch(&ports, di())).await;
1781
1782            assert!(matches!(c1, Err(Error::RequestFailed(_))));
1783        });
1784    }
1785
1786    #[test]
1787    fn request_wrong_spec() {
1788        MockRuntime::test_with_various(|rt| async move {
1789            #[allow(deprecated)] // TODO #1885
1790            let rt = MockSleepRuntime::new(rt);
1791            let ports = TargetCircUsage::new_from_ipv4_ports(&[80, 443]);
1792
1793            // The first time this is called, it will build a circuit
1794            // with the wrong spec.  (A circuit builder should never
1795            // actually _do_ that, but it's something we code for.)
1796            let builder = make_builder(&rt);
1797            builder.set(
1798                &ports,
1799                vec![FakeOp::WrongSpec(target_to_spec(
1800                    &TargetCircUsage::new_from_ipv4_ports(&[22]),
1801                ))],
1802            );
1803
1804            let mgr = Arc::new(AbstractCircMgr::new(
1805                builder,
1806                rt.clone(),
1807                CircuitTiming::default(),
1808            ));
1809            let c1 = rt.wait_for(mgr.get_or_launch(&ports, di())).await;
1810
1811            assert!(c1.is_ok());
1812        });
1813    }
1814
1815    #[test]
1816    fn request_retried() {
1817        MockRuntime::test_with_various(|rt| async move {
1818            #[allow(deprecated)] // TODO #1885
1819            let rt = MockSleepRuntime::new(rt);
1820            let ports = TargetCircUsage::new_from_ipv4_ports(&[80, 443]);
1821
1822            // This will fail twice, and then succeed. The result will be
1823            // a success.
1824            let builder = make_builder(&rt);
1825            builder.set(&ports, vec![FakeOp::Fail, FakeOp::Fail]);
1826
1827            let mgr = Arc::new(AbstractCircMgr::new(
1828                builder,
1829                rt.clone(),
1830                CircuitTiming::default(),
1831            ));
1832
1833            // This test doesn't exercise any timeout behaviour.
1834            rt.block_advance("test doesn't require advancing");
1835
1836            let (c1, c2) = rt
1837                .wait_for(futures::future::join(
1838                    mgr.get_or_launch(&ports, di()),
1839                    mgr.get_or_launch(&ports, di()),
1840                ))
1841                .await;
1842
1843            let c1 = c1.unwrap().0;
1844            let c2 = c2.unwrap().0;
1845
1846            assert!(FakeCirc::eq(&c1, &c2));
1847        });
1848    }
1849
1850    #[test]
1851    fn isolated() {
1852        MockRuntime::test_with_various(|rt| async move {
1853            #[allow(deprecated)] // TODO #1885
1854            let rt = MockSleepRuntime::new(rt);
1855            let builder = make_builder(&rt);
1856            let mgr = Arc::new(AbstractCircMgr::new(
1857                builder,
1858                rt.clone(),
1859                CircuitTiming::default(),
1860            ));
1861
1862            // Set our isolation so that iso1 and iso2 can't share a circuit,
1863            // but no_iso can share a circuit with either.
1864            let iso1 = TargetCircUsage::Exit {
1865                ports: vec![TargetPort::ipv4(443)],
1866                isolation: StreamIsolation::builder()
1867                    .owner_token(IsolationToken::new())
1868                    .build()
1869                    .unwrap(),
1870                country_code: None,
1871                require_stability: false,
1872            };
1873            let iso2 = TargetCircUsage::Exit {
1874                ports: vec![TargetPort::ipv4(443)],
1875                isolation: StreamIsolation::builder()
1876                    .owner_token(IsolationToken::new())
1877                    .build()
1878                    .unwrap(),
1879                country_code: None,
1880                require_stability: false,
1881            };
1882            let no_iso1 = TargetCircUsage::new_from_ipv4_ports(&[443]);
1883            let no_iso2 = no_iso1.clone();
1884
1885            // We're going to try launching these circuits in 24 different
1886            // orders, to make sure that the outcome is correct each time.
1887            use itertools::Itertools;
1888            let timeouts: Vec<_> = [0_u64, 2, 4, 6]
1889                .iter()
1890                .map(|d| Duration::from_millis(*d))
1891                .collect();
1892
1893            for delays in timeouts.iter().permutations(4) {
1894                let d1 = delays[0];
1895                let d2 = delays[1];
1896                let d3 = delays[2];
1897                let d4 = delays[2];
1898                let (c_iso1, c_iso2, c_no_iso1, c_no_iso2) = rt
1899                    .wait_for(futures::future::join4(
1900                        async {
1901                            rt.sleep(*d1).await;
1902                            mgr.get_or_launch(&iso1, di()).await
1903                        },
1904                        async {
1905                            rt.sleep(*d2).await;
1906                            mgr.get_or_launch(&iso2, di()).await
1907                        },
1908                        async {
1909                            rt.sleep(*d3).await;
1910                            mgr.get_or_launch(&no_iso1, di()).await
1911                        },
1912                        async {
1913                            rt.sleep(*d4).await;
1914                            mgr.get_or_launch(&no_iso2, di()).await
1915                        },
1916                    ))
1917                    .await;
1918
1919                let c_iso1 = c_iso1.unwrap().0;
1920                let c_iso2 = c_iso2.unwrap().0;
1921                let c_no_iso1 = c_no_iso1.unwrap().0;
1922                let c_no_iso2 = c_no_iso2.unwrap().0;
1923
1924                assert!(!FakeCirc::eq(&c_iso1, &c_iso2));
1925                assert!(!FakeCirc::eq(&c_iso1, &c_no_iso1));
1926                assert!(!FakeCirc::eq(&c_iso1, &c_no_iso2));
1927                assert!(!FakeCirc::eq(&c_iso2, &c_no_iso1));
1928                assert!(!FakeCirc::eq(&c_iso2, &c_no_iso2));
1929                assert!(FakeCirc::eq(&c_no_iso1, &c_no_iso2));
1930            }
1931        });
1932    }
1933
1934    #[test]
1935    fn opportunistic() {
1936        MockRuntime::test_with_various(|rt| async move {
1937            #[allow(deprecated)] // TODO #1885
1938            let rt = MockSleepRuntime::new(rt);
1939
1940            // The first request will time out completely, but we're
1941            // making a second request after we launch it.  That
1942            // request should succeed, and notify the first request.
1943
1944            let ports1 = TargetCircUsage::new_from_ipv4_ports(&[80]);
1945            let ports2 = TargetCircUsage::new_from_ipv4_ports(&[80, 443]);
1946
1947            let builder = make_builder(&rt);
1948            builder.set(&ports1, vec![FakeOp::Timeout]);
1949
1950            let mgr = Arc::new(AbstractCircMgr::new(
1951                builder,
1952                rt.clone(),
1953                CircuitTiming::default(),
1954            ));
1955            // Note that ports2 will be wider than ports1, so the second
1956            // request will have to launch a new circuit.
1957
1958            let (c1, c2) = rt
1959                .wait_for(futures::future::join(
1960                    mgr.get_or_launch(&ports1, di()),
1961                    async {
1962                        rt.sleep(Duration::from_millis(100)).await;
1963                        mgr.get_or_launch(&ports2, di()).await
1964                    },
1965                ))
1966                .await;
1967
1968            if let (Ok((c1, _)), Ok((c2, _))) = (c1, c2) {
1969                assert!(FakeCirc::eq(&c1, &c2));
1970            } else {
1971                panic!();
1972            };
1973        });
1974    }
1975
1976    #[test]
1977    fn prebuild() {
1978        MockRuntime::test_with_various(|rt| async move {
1979            // This time we're going to use ensure_circuit() to make
1980            // sure that a circuit gets built, and then launch two
1981            // other circuits that will use it.
1982            #[allow(deprecated)] // TODO #1885
1983            let rt = MockSleepRuntime::new(rt);
1984            let builder = make_builder(&rt);
1985            let mgr = Arc::new(AbstractCircMgr::new(
1986                builder,
1987                rt.clone(),
1988                CircuitTiming::default(),
1989            ));
1990
1991            let ports1 = TargetCircUsage::new_from_ipv4_ports(&[80, 443]);
1992            let ports2 = TargetCircUsage::new_from_ipv4_ports(&[80]);
1993            let ports3 = TargetCircUsage::new_from_ipv4_ports(&[443]);
1994
1995            let (ok, c1, c2) = rt
1996                .wait_for(futures::future::join3(
1997                    mgr.ensure_circuit(&ports1, di()),
1998                    async {
1999                        rt.sleep(Duration::from_millis(10)).await;
2000                        mgr.get_or_launch(&ports2, di()).await
2001                    },
2002                    async {
2003                        rt.sleep(Duration::from_millis(50)).await;
2004                        mgr.get_or_launch(&ports3, di()).await
2005                    },
2006                ))
2007                .await;
2008
2009            assert!(ok.is_ok());
2010
2011            let c1 = c1.unwrap().0;
2012            let c2 = c2.unwrap().0;
2013
2014            // If we had launched these separately, they wouldn't share
2015            // a circuit.
2016            assert!(FakeCirc::eq(&c1, &c2));
2017        });
2018    }
2019
2020    #[test]
2021    fn expiration() {
2022        MockRuntime::test_with_various(|rt| async move {
2023            use crate::config::CircuitTimingBuilder;
2024            // Now let's make some circuits -- one dirty, one clean, and
2025            // make sure that one expires and one doesn't.
2026            #[allow(deprecated)] // TODO #1885
2027            let rt = MockSleepRuntime::new(rt);
2028            let builder = make_builder(&rt);
2029
2030            let circuit_timing = CircuitTimingBuilder::default()
2031                .max_dirtiness(Duration::from_secs(15))
2032                .build()
2033                .unwrap();
2034
2035            let mgr = Arc::new(AbstractCircMgr::new(builder, rt.clone(), circuit_timing));
2036
2037            let imap = TargetCircUsage::new_from_ipv4_ports(&[993]);
2038            let pop = TargetCircUsage::new_from_ipv4_ports(&[995]);
2039
2040            let (ok, pop1) = rt
2041                .wait_for(futures::future::join(
2042                    mgr.ensure_circuit(&imap, di()),
2043                    mgr.get_or_launch(&pop, di()),
2044                ))
2045                .await;
2046
2047            assert!(ok.is_ok());
2048            let pop1 = pop1.unwrap().0;
2049
2050            rt.advance(Duration::from_secs(30)).await;
2051            rt.advance(Duration::from_secs(15)).await;
2052            let imap1 = rt.wait_for(mgr.get_or_launch(&imap, di())).await.unwrap().0;
2053
2054            // This should expire the pop circuit, since it came from
2055            // get_or_launch() [which marks the circuit as being
2056            // used].  It should not expire the imap circuit, since
2057            // it was not dirty until 15 seconds after the cutoff.
2058            let now = rt.now();
2059
2060            mgr.expire_circs(now);
2061
2062            let (pop2, imap2) = rt
2063                .wait_for(futures::future::join(
2064                    mgr.get_or_launch(&pop, di()),
2065                    mgr.get_or_launch(&imap, di()),
2066                ))
2067                .await;
2068
2069            let pop2 = pop2.unwrap().0;
2070            let imap2 = imap2.unwrap().0;
2071
2072            assert!(!FakeCirc::eq(&pop2, &pop1));
2073            assert!(FakeCirc::eq(&imap2, &imap1));
2074        });
2075    }
2076
2077    /// Returns three exit policies; one that permits nothing, one that permits ports 80
2078    /// and 443 only, and one that permits all ports.
2079    fn get_exit_policies() -> (ExitPolicy, ExitPolicy, ExitPolicy) {
2080        // FIXME(eta): the below is copypasta; would be nice to have a better way of
2081        //             constructing ExitPolicy objects for testing maybe
2082        let network = testnet::construct_netdir().unwrap_if_sufficient().unwrap();
2083
2084        // Nodes with ID 0x0a through 0x13 and 0x1e through 0x27 are
2085        // exits.  Odd-numbered ones allow only ports 80 and 443;
2086        // even-numbered ones allow all ports.
2087        let id_noexit: Ed25519Identity = [0x05; 32].into();
2088        let id_webexit: Ed25519Identity = [0x11; 32].into();
2089        let id_fullexit: Ed25519Identity = [0x20; 32].into();
2090
2091        let not_exit = network.by_id(&id_noexit).unwrap();
2092        let web_exit = network.by_id(&id_webexit).unwrap();
2093        let full_exit = network.by_id(&id_fullexit).unwrap();
2094
2095        let ep_none = ExitPolicy::from_relay(&not_exit);
2096        let ep_web = ExitPolicy::from_relay(&web_exit);
2097        let ep_full = ExitPolicy::from_relay(&full_exit);
2098        (ep_none, ep_web, ep_full)
2099    }
2100
2101    #[test]
2102    fn test_find_supported() {
2103        let (ep_none, ep_web, ep_full) = get_exit_policies();
2104        let fake_circ = Arc::new(FakeCirc { id: FakeId::next() });
2105        let expiration = ExpirationInfo::Unused {
2106            use_before: Instant::now() + Duration::from_secs(60 * 60),
2107        };
2108
2109        let mut entry_none = OpenEntry::new(
2110            SupportedCircUsage::Exit {
2111                policy: ep_none,
2112                isolation: None,
2113                country_code: None,
2114                all_relays_stable: true,
2115            },
2116            fake_circ.clone(),
2117            expiration.clone(),
2118        );
2119        let mut entry_none_c = entry_none.clone();
2120        let mut entry_web = OpenEntry::new(
2121            SupportedCircUsage::Exit {
2122                policy: ep_web,
2123                isolation: None,
2124                country_code: None,
2125                all_relays_stable: true,
2126            },
2127            fake_circ.clone(),
2128            expiration.clone(),
2129        );
2130        let mut entry_web_c = entry_web.clone();
2131        let mut entry_full = OpenEntry::new(
2132            SupportedCircUsage::Exit {
2133                policy: ep_full,
2134                isolation: None,
2135                country_code: None,
2136                all_relays_stable: true,
2137            },
2138            fake_circ,
2139            expiration,
2140        );
2141        let mut entry_full_c = entry_full.clone();
2142
2143        let usage_web = TargetCircUsage::new_from_ipv4_ports(&[80]);
2144        let empty: Vec<&mut OpenEntry<FakeCirc>> = vec![];
2145
2146        assert_isoleq!(
2147            SupportedCircUsage::find_supported(vec![&mut entry_none].into_iter(), &usage_web),
2148            empty
2149        );
2150
2151        // HACK(eta): We have to faff around with clones and such because
2152        //            `abstract_spec_find_supported` has a silly signature that involves `&mut`
2153        //            refs, which we can't have more than one of.
2154
2155        assert_isoleq!(
2156            SupportedCircUsage::find_supported(
2157                vec![&mut entry_none, &mut entry_web].into_iter(),
2158                &usage_web,
2159            ),
2160            vec![&mut entry_web_c]
2161        );
2162
2163        assert_isoleq!(
2164            SupportedCircUsage::find_supported(
2165                vec![&mut entry_none, &mut entry_web, &mut entry_full].into_iter(),
2166                &usage_web,
2167            ),
2168            vec![&mut entry_web_c, &mut entry_full_c]
2169        );
2170
2171        // Test preemptive circuit usage:
2172
2173        let usage_preemptive_web = TargetCircUsage::Preemptive {
2174            port: Some(TargetPort::ipv4(80)),
2175            circs: 2,
2176            require_stability: false,
2177        };
2178        let usage_preemptive_dns = TargetCircUsage::Preemptive {
2179            port: None,
2180            circs: 2,
2181            require_stability: false,
2182        };
2183
2184        // shouldn't return anything unless there are >=2 circuits
2185
2186        assert_isoleq!(
2187            SupportedCircUsage::find_supported(
2188                vec![&mut entry_none].into_iter(),
2189                &usage_preemptive_web
2190            ),
2191            empty
2192        );
2193
2194        assert_isoleq!(
2195            SupportedCircUsage::find_supported(
2196                vec![&mut entry_none].into_iter(),
2197                &usage_preemptive_dns
2198            ),
2199            empty
2200        );
2201
2202        assert_isoleq!(
2203            SupportedCircUsage::find_supported(
2204                vec![&mut entry_none, &mut entry_web].into_iter(),
2205                &usage_preemptive_web
2206            ),
2207            empty
2208        );
2209
2210        assert_isoleq!(
2211            SupportedCircUsage::find_supported(
2212                vec![&mut entry_none, &mut entry_web].into_iter(),
2213                &usage_preemptive_dns
2214            ),
2215            vec![&mut entry_none_c, &mut entry_web_c]
2216        );
2217
2218        assert_isoleq!(
2219            SupportedCircUsage::find_supported(
2220                vec![&mut entry_none, &mut entry_web, &mut entry_full].into_iter(),
2221                &usage_preemptive_web
2222            ),
2223            vec![&mut entry_web_c, &mut entry_full_c]
2224        );
2225    }
2226
2227    #[test]
2228    fn test_circlist_preemptive_target_circs() {
2229        MockRuntime::test_with_various(|rt| async move {
2230            #[allow(deprecated)] // TODO #1885
2231            let rt = MockSleepRuntime::new(rt);
2232            let netdir = testnet::construct_netdir().unwrap_if_sufficient().unwrap();
2233            let dirinfo = DirInfo::Directory(&netdir);
2234
2235            let builder = make_builder(&rt);
2236
2237            for circs in [2, 8].iter() {
2238                let mut circlist = CircList::<FakeBuilder<MockRuntime>, MockRuntime>::new();
2239
2240                let preemptive_target = TargetCircUsage::Preemptive {
2241                    port: Some(TargetPort::ipv4(80)),
2242                    circs: *circs,
2243                    require_stability: false,
2244                };
2245
2246                for _ in 0..*circs {
2247                    assert!(circlist.find_open(&preemptive_target).is_none());
2248
2249                    let usage = TargetCircUsage::new_from_ipv4_ports(&[80]);
2250                    let (plan, _) = builder.plan_circuit(&usage, dirinfo).unwrap();
2251                    let (spec, circ) = rt.wait_for(builder.build_circuit(plan)).await.unwrap();
2252                    let entry = OpenEntry::new(
2253                        spec,
2254                        circ,
2255                        ExpirationInfo::new(rt.now() + Duration::from_secs(60)),
2256                    );
2257                    circlist.add_open(entry);
2258                }
2259
2260                assert!(circlist.find_open(&preemptive_target).is_some());
2261            }
2262        });
2263    }
2264}