tor_hsservice/
replay.rs

1//! Facility for detecting and preventing replays on introduction requests.
2//!
3//! If we were to permit the introduction point to replay the same request
4//! multiple times, it would cause the service to contact the rendezvous point
5//! again with the same rendezvous cookie as before, which could help with
6//! traffic analysis.
7//!
8//! (This could also be a DoS vector if the introduction point decided to
9//! overload the service.)
10//!
11//! Because we use the same introduction point keys across restarts, we need to
12//! make sure that our replay logs are already persistent.  We do this by using
13//! a file on disk.
14
15mod ipt;
16
17use crate::internal_prelude::*;
18
19/// A probabilistic data structure to record fingerprints of observed Introduce2
20/// messages.
21///
22/// We need to record these fingerprints to prevent replay attacks; see the
23/// module documentation for an explanation of why that would be bad.
24///
25/// A ReplayLog should correspond to a `KP_hss_ntor` key, and should have the
26/// same lifespan: dropping it sooner will enable replays, but dropping it later
27/// will waste disk and memory.
28///
29/// False positives are allowed, to conserve on space.
30pub(crate) struct ReplayLog<T> {
31    /// The inner probabilistic data structure.
32    seen: data::Filter,
33    /// Persistent state file etc., if we're persistent
34    ///
35    /// If is is `None`, this RelayLog is ephemeral.
36    file: Option<PersistFile>,
37    /// [`PhantomData`] so rustc doesn't complain about the unused type param.
38    ///
39    /// This type represents the type of data that we're storing, as well as the type of the
40    /// key/name for that data.
41    replay_log_type: PhantomData<T>,
42}
43
44/// A [`ReplayLog`] for [`Introduce2`](tor_cell::relaycell::msg::Introduce2) messages.
45pub(crate) type IptReplayLog = ReplayLog<ipt::IptReplayLogType>;
46
47/// The length of the [`ReplayLogType::MAGIC`] constant.
48///
49// TODO: If Rust's constant expressions supported generics we wouldn't need this at all.
50const MAGIC_LEN: usize = 32;
51
52/// The length of the message that we store on disk, in bytes.
53///
54/// If the message is longer than this, then we will need to hash or truncate it before storing it
55/// to disk.
56///
57// TODO: Once const generics are good, this should be a associated constant for ReplayLogType.
58pub(crate) const OUTPUT_LEN: usize = 16;
59
60/// A trait to represent a set of types that ReplayLog can be used with.
61pub(crate) trait ReplayLogType {
62    // TODO: It would be nice to encode the directory name as a associated constant here, rather
63    // than having the external code pass it in to us.
64
65    /// The name of this item, used for the log filename.
66    type Name;
67
68    /// The type of the messages that we are ensuring the uniqueness of.
69    type Message;
70
71    /// A magic string that we put at the start of each log file, to make sure that
72    /// we don't confuse this file format with others.
73    const MAGIC: &'static [u8; MAGIC_LEN];
74
75    /// Convert [`Self::Name`] to a [`String`]
76    fn format_filename(name: &Self::Name) -> String;
77
78    /// Convert [`Self::Message`] to bytes that will be stored in the log.
79    fn transform_message(message: &Self::Message) -> [u8; OUTPUT_LEN];
80
81    /// Parse a filename into [`Self::Name`].
82    fn parse_log_leafname(leaf: &OsStr) -> Result<Self::Name, Cow<'static, str>>;
83}
84
85/// Persistent state file, and associated data
86///
87/// Stored as `ReplayLog.file`.
88#[derive(Debug)]
89pub(crate) struct PersistFile {
90    /// A file logging fingerprints of the messages we have seen.
91    file: BufWriter<File>,
92    /// Whether we had a possible partial write
93    ///
94    /// See the comment inside [`ReplayLog::check_for_replay`].
95    /// `Ok` means all is well.
96    /// `Err` means we may have written partial data to the actual file,
97    /// and need to make sure we're back at a record boundary.
98    needs_resynch: Result<(), ()>,
99    /// Filesystem lock which must not be released until after we finish writing
100    ///
101    /// Must come last so that the drop order is correct
102    #[allow(dead_code)] // Held just so we unlock on drop
103    lock: Arc<LockFileGuard>,
104}
105
106/// Replay log files have a `.bin` suffix.
107///
108/// The name of the file is determined by [`ReplayLogType::format_filename`].
109const REPLAY_LOG_SUFFIX: &str = ".bin";
110
111impl<T: ReplayLogType> ReplayLog<T> {
112    /// Create a new ReplayLog not backed by any data storage.
113    #[allow(dead_code)] // TODO #1186 Remove once something uses ReplayLog.
114    pub(crate) fn new_ephemeral() -> Self {
115        Self {
116            seen: data::Filter::new(),
117            file: None,
118            replay_log_type: PhantomData,
119        }
120    }
121
122    /// Create a ReplayLog backed by the file at a given path.
123    ///
124    /// If the file already exists, load its contents and append any new
125    /// contents to it; otherwise, create the file.
126    ///
127    /// **`lock` must already have been locked** and this
128    /// *cannot be assured by the type system*.
129    ///
130    /// # Limitations
131    ///
132    /// It is the caller's responsibility to make sure that there are never two
133    /// `ReplayLogs` open at once for the same path, or for two paths that
134    /// resolve to the same file.
135    pub(crate) fn new_logged(
136        dir: &InstanceRawSubdir,
137        name: &T::Name,
138    ) -> Result<Self, CreateIptError> {
139        let leaf = T::format_filename(name);
140        let path = dir.as_path().join(leaf);
141        let lock_guard = dir.raw_lock_guard();
142
143        Self::new_logged_inner(&path, lock_guard).map_err(|error| CreateIptError::OpenReplayLog {
144            file: path,
145            error: error.into(),
146        })
147    }
148
149    /// Inner function for `new_logged`, with reified arguments and raw error type
150    fn new_logged_inner(path: impl AsRef<Path>, lock: Arc<LockFileGuard>) -> io::Result<Self> {
151        let mut file = {
152            let mut options = OpenOptions::new();
153            options.read(true).write(true).create(true);
154
155            #[cfg(target_family = "unix")]
156            {
157                use std::os::unix::fs::OpenOptionsExt as _;
158                options.mode(0o600);
159            }
160
161            options.open(path)?
162        };
163
164        // If the file is new, we need to write the magic string. Else we must
165        // read it.
166        let file_len = file.metadata()?.len();
167        if file_len == 0 {
168            file.write_all(T::MAGIC)?;
169        } else {
170            let mut m = [0_u8; MAGIC_LEN];
171            file.read_exact(&mut m)?;
172            if &m != T::MAGIC {
173                return Err(io::Error::new(
174                    io::ErrorKind::InvalidData,
175                    LogContentError::UnrecognizedFormat,
176                ));
177            }
178
179            Self::truncate_to_multiple(&mut file, file_len)?;
180        }
181
182        // Now read the rest of the file.
183        let mut seen = data::Filter::new();
184        let mut r = BufReader::new(file);
185        loop {
186            let mut msg = [0_u8; OUTPUT_LEN];
187            match r.read_exact(&mut msg) {
188                Ok(()) => {
189                    let _ = seen.test_and_add(&msg); // ignore error.
190                }
191                Err(e) if e.kind() == io::ErrorKind::UnexpectedEof => break,
192                Err(e) => return Err(e),
193            }
194        }
195        let mut file = r.into_inner();
196        file.seek(SeekFrom::End(0))?;
197
198        let file = PersistFile {
199            file: BufWriter::new(file),
200            needs_resynch: Ok(()),
201            lock,
202        };
203
204        Ok(Self {
205            seen,
206            file: Some(file),
207            replay_log_type: PhantomData,
208        })
209    }
210
211    /// Truncate `file` to contain a whole number of records
212    ///
213    /// `current_len` should have come from `file.metadata()`.
214    // If the file's length is not an even multiple of MESSAGE_LEN after the MAGIC, truncate it.
215    fn truncate_to_multiple(file: &mut File, current_len: u64) -> io::Result<()> {
216        let excess = (current_len - T::MAGIC.len() as u64) % (OUTPUT_LEN as u64);
217        if excess != 0 {
218            file.set_len(current_len - excess)?;
219        }
220        Ok(())
221    }
222
223    /// Test whether we have already seen `message`.
224    ///
225    /// If we have seen it, return `Err(ReplayError::AlreadySeen)`.  (Since this
226    /// is a probabilistic data structure, there is a chance of returning this
227    /// error even if we have we have _not_ seen this particular message)
228    ///
229    /// Otherwise, return `Ok(())`.
230    pub(crate) fn check_for_replay(&mut self, message: &T::Message) -> Result<(), ReplayError> {
231        let h = T::transform_message(message);
232        self.seen.test_and_add(&h)?;
233        if let Some(f) = self.file.as_mut() {
234            (|| {
235                // If write_all fails, it might have written part of the data;
236                // in that case, we must truncate the file to resynchronise.
237                // We set a note to truncate just before we call write_all
238                // and clear it again afterwards.
239                //
240                // But, first, we need to deal with any previous note we left ourselves.
241
242                // (With the current implementation of std::io::BufWriter, this is
243                // unnecessary, because if the argument to write_all is smaller than
244                // the buffer size, BufWriter::write_all always just copies to the buffer,
245                // flushing first if necessary; and when it flushes, it uses write,
246                // not write_all.  So the use of write_all never causes "lost" data.
247                // However, this is not a documented guarantee.)
248                match f.needs_resynch {
249                    Ok(()) => {}
250                    Err(()) => {
251                        // We're going to reach behind the BufWriter, so we need to make
252                        // sure it's in synch with the underlying File.
253                        f.file.flush()?;
254                        let inner = f.file.get_mut();
255                        let len = inner.metadata()?.len();
256                        Self::truncate_to_multiple(inner, len)?;
257                        // cursor is now past end, must reset (see std::fs::File::set_len)
258                        inner.seek(SeekFrom::End(0))?;
259                    }
260                }
261                f.needs_resynch = Err(());
262
263                f.file.write_all(&h[..])?;
264
265                f.needs_resynch = Ok(());
266
267                Ok(())
268            })()
269            .map_err(|e| ReplayError::Log(Arc::new(e)))?;
270        }
271        Ok(())
272    }
273
274    /// Flush any buffered data to disk.
275    #[allow(dead_code)] // TODO #1208
276    pub(crate) fn flush(&mut self) -> Result<(), io::Error> {
277        if let Some(f) = self.file.as_mut() {
278            f.file.flush()?;
279        }
280        Ok(())
281    }
282
283    /// Tries to parse a filename in the replay logs directory
284    ///
285    /// If the leafname refers to a file that would be created by
286    /// [`ReplayLog::new_logged`], returns the name as a Rust type.
287    ///
288    /// Otherwise returns an error explaining why it isn't,
289    /// as a plain string (for logging).
290    pub(crate) fn parse_log_leafname(leaf: &OsStr) -> Result<T::Name, Cow<'static, str>> {
291        T::parse_log_leafname(leaf)
292    }
293}
294
295/// Wrapper around a fast-ish data structure for detecting replays with some
296/// false positive rate.  Bloom filters, cuckoo filters, and xorf filters are all
297/// an option here.  You could even use a HashSet.
298///
299/// We isolate this code to make it easier to replace.
300mod data {
301    use super::{ReplayError, OUTPUT_LEN};
302    use growable_bloom_filter::GrowableBloom;
303
304    /// A probabilistic membership filter.
305    pub(super) struct Filter(pub(crate) GrowableBloom);
306
307    impl Filter {
308        /// Create a new empty filter
309        pub(super) fn new() -> Self {
310            // TODO: Perhaps we should make the capacity here tunable, based on
311            // the number of entries we expect.  These values are more or less
312            // pulled out of thin air.
313            let desired_error_prob = 1.0 / 100_000.0;
314            let est_insertions = 100_000;
315            Filter(GrowableBloom::new(desired_error_prob, est_insertions))
316        }
317
318        /// Try to add `msg` to this filter if it isn't already there.
319        ///
320        /// Return Ok(()) or Err(AlreadySeen).
321        pub(super) fn test_and_add(&mut self, msg: &[u8; OUTPUT_LEN]) -> Result<(), ReplayError> {
322            if self.0.insert(&msg[..]) {
323                Ok(())
324            } else {
325                Err(ReplayError::AlreadySeen)
326            }
327        }
328    }
329}
330
331/// A problem that prevents us from reading a ReplayLog from disk.
332///
333/// (This only exists so we can wrap it up in an [`io::Error`])
334#[derive(thiserror::Error, Clone, Debug)]
335enum LogContentError {
336    /// The magic number on the log file was incorrect.
337    #[error("unrecognized data format")]
338    UnrecognizedFormat,
339}
340
341/// An error occurred while checking whether we've seen an element before.
342#[derive(thiserror::Error, Clone, Debug)]
343pub(crate) enum ReplayError {
344    /// We have already seen this item.
345    #[error("Already seen")]
346    AlreadySeen,
347
348    /// We were unable to record this item in the log.
349    #[error("Unable to log data")]
350    Log(Arc<std::io::Error>),
351}
352
353#[cfg(test)]
354mod test {
355    // @@ begin test lint list maintained by maint/add_warning @@
356    #![allow(clippy::bool_assert_comparison)]
357    #![allow(clippy::clone_on_copy)]
358    #![allow(clippy::dbg_macro)]
359    #![allow(clippy::mixed_attributes_style)]
360    #![allow(clippy::print_stderr)]
361    #![allow(clippy::print_stdout)]
362    #![allow(clippy::single_char_pattern)]
363    #![allow(clippy::unwrap_used)]
364    #![allow(clippy::unchecked_duration_subtraction)]
365    #![allow(clippy::useless_vec)]
366    #![allow(clippy::needless_pass_by_value)]
367    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
368
369    use super::*;
370    use crate::test::mk_state_instance;
371    use rand::Rng;
372    use test_temp_dir::{test_temp_dir, TestTempDir, TestTempDirGuard};
373
374    struct TestReplayLogType;
375
376    type TestReplayLog = ReplayLog<TestReplayLogType>;
377
378    impl ReplayLogType for TestReplayLogType {
379        type Name = IptLocalId;
380        type Message = [u8; OUTPUT_LEN];
381
382        const MAGIC: &'static [u8; MAGIC_LEN] = b"<tor test replay>\n\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
383
384        fn format_filename(name: &IptLocalId) -> String {
385            format!("{name}{REPLAY_LOG_SUFFIX}")
386        }
387
388        fn transform_message(message: &[u8; OUTPUT_LEN]) -> [u8; OUTPUT_LEN] {
389            message.clone()
390        }
391
392        fn parse_log_leafname(leaf: &OsStr) -> Result<IptLocalId, Cow<'static, str>> {
393            let leaf = leaf.to_str().ok_or("not proper unicode")?;
394            let lid = leaf.strip_suffix(REPLAY_LOG_SUFFIX).ok_or("not *.bin")?;
395            let lid: IptLocalId = lid
396                .parse()
397                .map_err(|e: crate::InvalidIptLocalId| e.to_string())?;
398            Ok(lid)
399        }
400    }
401
402    fn rand_msg<R: Rng>(rng: &mut R) -> [u8; OUTPUT_LEN] {
403        rng.random()
404    }
405
406    /// Basic tests on an ephemeral IptReplayLog.
407    #[test]
408    fn simple_usage() {
409        let mut rng = tor_basic_utils::test_rng::testing_rng();
410        let group_1: Vec<_> = (0..=100).map(|_| rand_msg(&mut rng)).collect();
411        let group_2: Vec<_> = (0..=100).map(|_| rand_msg(&mut rng)).collect();
412
413        let mut log = TestReplayLog::new_ephemeral();
414        // Add everything in group 1.
415        for msg in &group_1 {
416            assert!(log.check_for_replay(msg).is_ok(), "False positive");
417        }
418        // Make sure that everything in group 1 is still there.
419        for msg in &group_1 {
420            assert!(log.check_for_replay(msg).is_err());
421        }
422        // Make sure that group 2 is detected as not-there.
423        for msg in &group_2 {
424            assert!(log.check_for_replay(msg).is_ok(), "False positive");
425        }
426    }
427
428    const TEST_TEMP_SUBDIR: &str = "replaylog";
429
430    fn create_logged(dir: &TestTempDir) -> TestTempDirGuard<TestReplayLog> {
431        dir.subdir_used_by(TEST_TEMP_SUBDIR, |dir| {
432            let inst = mk_state_instance(&dir, "allium");
433            let raw = inst.raw_subdir("iptreplay").unwrap();
434            TestReplayLog::new_logged(&raw, &IptLocalId::dummy(1)).unwrap()
435        })
436    }
437
438    /// Basic tests on an persistent IptReplayLog.
439    #[test]
440    fn logging_basics() {
441        let mut rng = tor_basic_utils::test_rng::testing_rng();
442        let group_1: Vec<_> = (0..=100).map(|_| rand_msg(&mut rng)).collect();
443        let group_2: Vec<_> = (0..=100).map(|_| rand_msg(&mut rng)).collect();
444
445        let dir = test_temp_dir!();
446        let mut log = create_logged(&dir);
447        // Add everything in group 1, then close and reload.
448        for msg in &group_1 {
449            assert!(log.check_for_replay(msg).is_ok(), "False positive");
450        }
451        drop(log);
452        let mut log = create_logged(&dir);
453        // Make sure everything in group 1 is still there.
454        for msg in &group_1 {
455            assert!(log.check_for_replay(msg).is_err());
456        }
457        // Now add everything in group 2, then close and reload.
458        for msg in &group_2 {
459            assert!(log.check_for_replay(msg).is_ok(), "False positive");
460        }
461        drop(log);
462        let mut log = create_logged(&dir);
463        // Make sure that groups 1 and 2 are still there.
464        for msg in group_1.iter().chain(group_2.iter()) {
465            assert!(log.check_for_replay(msg).is_err());
466        }
467    }
468
469    /// Test for a log that gets truncated mid-write.
470    #[test]
471    fn test_truncated() {
472        let mut rng = tor_basic_utils::test_rng::testing_rng();
473        let group_1: Vec<_> = (0..=100).map(|_| rand_msg(&mut rng)).collect();
474        let group_2: Vec<_> = (0..=100).map(|_| rand_msg(&mut rng)).collect();
475
476        let dir = test_temp_dir!();
477        let mut log = create_logged(&dir);
478        for msg in &group_1 {
479            assert!(log.check_for_replay(msg).is_ok(), "False positive");
480        }
481        drop(log);
482        // Truncate the file by 7 bytes.
483        dir.subdir_used_by(TEST_TEMP_SUBDIR, |dir| {
484            let path = dir.join(format!("hss/allium/iptreplay/{}.bin", IptLocalId::dummy(1)));
485            let file = OpenOptions::new().write(true).open(path).unwrap();
486            // Make sure that the file has the length we expect.
487            let expected_len = MAGIC_LEN + OUTPUT_LEN * group_1.len();
488            assert_eq!(expected_len as u64, file.metadata().unwrap().len());
489            file.set_len((expected_len - 7) as u64).unwrap();
490        });
491        // Now, reload the log. We should be able to recover every non-truncated
492        // item...
493        let mut log = create_logged(&dir);
494        for msg in &group_1[..group_1.len() - 1] {
495            assert!(log.check_for_replay(msg).is_err());
496        }
497        // But not the last one, which we truncated.  (Checking will add it, though.)
498        assert!(
499            log.check_for_replay(&group_1[group_1.len() - 1]).is_ok(),
500            "False positive"
501        );
502        // Now add everything in group 2, then close and reload.
503        for msg in &group_2 {
504            assert!(log.check_for_replay(msg).is_ok(), "False positive");
505        }
506        drop(log);
507        let mut log = create_logged(&dir);
508        // Make sure that groups 1 and 2 are still there.
509        for msg in group_1.iter().chain(group_2.iter()) {
510            assert!(log.check_for_replay(msg).is_err());
511        }
512    }
513
514    /// Test for a partial write
515    #[test]
516    #[cfg(target_os = "linux")] // different platforms have different definitions of sigaction
517    fn test_partial_write() {
518        use std::env;
519        use std::os::unix::process::ExitStatusExt;
520        use std::process::Command;
521
522        // TODO this contraption should perhaps be productised and put somewhere else
523
524        const ENV_NAME: &str = "TOR_HSSERVICE_TEST_PARTIAL_WRITE_SUBPROCESS";
525        // for a wait status different from any of libtest's
526        const GOOD_SIGNAL: i32 = libc::SIGUSR2;
527
528        let sigemptyset = || unsafe {
529            let mut set = MaybeUninit::uninit();
530            libc::sigemptyset(set.as_mut_ptr());
531            set.assume_init()
532        };
533
534        // Check that SIGUSR2 starts out as SIG_DFL and unblocked
535        //
536        // We *reject* such situations, rather than fixing them up, because this is an
537        // irregular and broken environment that can cause arbitrarily weird behaviours.
538        // Programs on Unix are entitled to assume that their signal dispositions are
539        // SIG_DFL on entry, with signals unblocked.  (With a few exceptions.)
540        //
541        // So we want to detect and report any such environment, not let it slide.
542        unsafe {
543            let mut sa = MaybeUninit::uninit();
544            let r = libc::sigaction(GOOD_SIGNAL, ptr::null(), sa.as_mut_ptr());
545            assert_eq!(r, 0);
546            let sa = sa.assume_init();
547            assert_eq!(
548                sa.sa_sigaction,
549                libc::SIG_DFL,
550                "tests running in broken environment (SIGUSR2 not SIG_DFL)"
551            );
552
553            let empty_set = sigemptyset();
554            let mut current_set = MaybeUninit::uninit();
555            let r = libc::sigprocmask(
556                libc::SIG_UNBLOCK,
557                (&empty_set) as _,
558                current_set.as_mut_ptr(),
559            );
560            assert_eq!(r, 0);
561            let current_set = current_set.assume_init();
562            let blocked = libc::sigismember((&current_set) as _, GOOD_SIGNAL);
563            assert_eq!(
564                blocked, 0,
565                "tests running in broken environment (SIGUSR2 blocked)"
566            );
567        }
568
569        match env::var(ENV_NAME) {
570            Err(env::VarError::NotPresent) => {
571                eprintln!("in test runner process, forking..,");
572                let output = Command::new(env::current_exe().unwrap())
573                    .args(["--nocapture", "replay::test::test_partial_write"])
574                    .env(ENV_NAME, "1")
575                    .output()
576                    .unwrap();
577                let print_output = |prefix, data| match std::str::from_utf8(data) {
578                    Ok(s) => {
579                        for l in s.split("\n") {
580                            eprintln!(" {prefix} {l}");
581                        }
582                    }
583                    Err(e) => eprintln!(" UTF-8 ERROR {prefix} {e}"),
584                };
585                print_output("!", &output.stdout);
586                print_output(">", &output.stderr);
587                let st = output.status;
588                eprintln!("reaped actual test process {st:?} (expecting signal {GOOD_SIGNAL})");
589                assert_eq!(st.signal(), Some(GOOD_SIGNAL));
590                return;
591            }
592            Ok(y) if y == "1" => {}
593            other => panic!("bad env var {ENV_NAME:?} {other:?}"),
594        };
595
596        // Now we are in our own process, and can mess about with ulimit etc.
597
598        use std::fs;
599        use std::mem::MaybeUninit;
600        use std::ptr;
601
602        fn set_ulimit(size: usize) {
603            unsafe {
604                use libc::RLIMIT_FSIZE;
605                let mut rlim = libc::rlimit {
606                    rlim_cur: 0,
607                    rlim_max: 0,
608                };
609                let r = libc::getrlimit(RLIMIT_FSIZE, (&mut rlim) as _);
610                assert_eq!(r, 0);
611                rlim.rlim_cur = size.try_into().unwrap();
612                let r = libc::setrlimit(RLIMIT_FSIZE, (&rlim) as _);
613                assert_eq!(r, 0);
614            }
615        }
616
617        // This test is quite complicated.
618        //
619        // We want to test partial writes.  We could perhaps have done this by
620        // parameterising IptReplayLog so it could have something other than File,
621        // but that would probably leak into the public API.
622        //
623        // Instead, we cause *actual* partial writes.  We use the Unix setrlimit
624        // call to limit the size of files our process is allowed to write.
625        // This causes the underlying write(2) calls to (i) generate SIGXFSZ
626        // (ii) if that doesn't kill the process, return partial writes.
627
628        test_temp_dir!().used_by(|dir| {
629            let path = dir.join("test.log");
630            let lock = LockFileGuard::lock(dir.join("dummy.lock")).unwrap();
631            let lock = Arc::new(lock);
632            let mut rl = TestReplayLog::new_logged_inner(&path, lock.clone()).unwrap();
633
634            const BUF: usize = 8192; // BufWriter default; if that changes, test will break
635
636            // We let ourselves write one whole buffer plus an odd amount of extra
637            const ALLOW: usize = BUF + 37;
638
639            // Ignore SIGXFSZ (default disposition is for exceeding the rlimit to kill us)
640            unsafe {
641                let sa = libc::sigaction {
642                    sa_sigaction: libc::SIG_IGN,
643                    sa_mask: sigemptyset(),
644                    sa_flags: 0,
645                    sa_restorer: None,
646                };
647                let r = libc::sigaction(libc::SIGXFSZ, (&sa) as _, ptr::null_mut());
648                assert_eq!(r, 0);
649            }
650
651            let demand_efbig = |e| match e {
652                // TODO MSRV 1.83: replace with io::ErrorKind::FileTooLarge?
653                ReplayError::Log(e) if e.raw_os_error() == Some(libc::EFBIG) => {}
654                other => panic!("expected EFBUG, got {other:?}"),
655            };
656
657            // Generate a distinct message given a phase and a counter
658            #[allow(clippy::identity_op)]
659            let mk_msg = |phase: u8, i: usize| {
660                let i = u32::try_from(i).unwrap();
661                let mut msg = [0_u8; OUTPUT_LEN];
662                msg[0] = phase;
663                msg[1] = phase;
664                msg[4] = (i >> 24) as _;
665                msg[5] = (i >> 16) as _;
666                msg[6] = (i >> 8) as _;
667                msg[7] = (i >> 0) as _;
668                msg
669            };
670
671            // Number of hashes we can write to the file before failure occurs
672            const CAN_DO: usize = (ALLOW + BUF - MAGIC_LEN) / OUTPUT_LEN;
673            dbg!(MAGIC_LEN, OUTPUT_LEN, BUF, ALLOW, CAN_DO);
674
675            // Record of the hashes that TestReplayLog tells us were OK and not replays;
676            // ie, which it therefore ought to have recorded.
677            let mut gave_ok = Vec::new();
678
679            set_ulimit(ALLOW);
680
681            for i in 0..CAN_DO {
682                let h = mk_msg(b'y', i);
683                rl.check_for_replay(&h).unwrap();
684                gave_ok.push(h);
685            }
686
687            let md = fs::metadata(&path).unwrap();
688            dbg!(md.len(), &rl.file);
689
690            // Now we have written what we can.  The next two calls will fail,
691            // since the BufWriter buffer is full and can't be flushed.
692
693            for i in 0..2 {
694                eprintln!("expecting EFBIG {i}");
695                demand_efbig(rl.check_for_replay(&mk_msg(b'n', i)).unwrap_err());
696                let md = fs::metadata(&path).unwrap();
697                assert_eq!(md.len(), u64::try_from(ALLOW).unwrap());
698            }
699
700            // Enough that we don't get any further file size exceedances
701            set_ulimit(ALLOW * 10);
702
703            // Now we should be able to recover.  We write two more hashes.
704            for i in 0..2 {
705                eprintln!("recovering {i}");
706                let h = mk_msg(b'r', i);
707                rl.check_for_replay(&h).unwrap();
708                gave_ok.push(h);
709            }
710
711            // flush explicitly just so we catch any error
712            // (drop would flush, but it can't report errors)
713            rl.flush().unwrap();
714            drop(rl);
715
716            // Reopen the log - reading in the written data.
717            // We can then check that everything the earlier IptReplayLog
718            // claimed to have written, is indeed recorded.
719
720            let mut rl = TestReplayLog::new_logged_inner(&path, lock.clone()).unwrap();
721            for msg in &gave_ok {
722                match rl.check_for_replay(msg) {
723                    Err(ReplayError::AlreadySeen) => {}
724                    other => panic!("expected AlreadySeen, got {other:?}"),
725                }
726            }
727
728            eprintln!("recovered file contents checked, all good");
729        });
730
731        unsafe {
732            libc::raise(libc::SIGUSR2);
733        }
734        panic!("we survived raise SIGUSR2");
735    }
736}