tor_rtcompat/scheduler.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
//! Utilities for dealing with periodic recurring tasks.
use crate::SleepProvider;
use futures::channel::mpsc;
use futures::channel::mpsc::{UnboundedReceiver, UnboundedSender};
use futures::{Stream, StreamExt};
use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};
use std::time::{Duration, Instant, SystemTime};
use pin_project::pin_project;
/// An error returned while telling a [`TaskSchedule`] to sleep.
///
/// Unlike regular "sleep" functions, the sleep operations on a [`TaskSchedule`]
/// can fail because there are no [`TaskHandle`]s left.
///
/// Note that it is *not* an error if the `sleep` function is interrupted,
/// cancelled, or or rescheduled for a later time: See [`TaskSchedule::sleep`]
/// for more information.
#[derive(Clone, Debug, thiserror::Error)]
#[non_exhaustive]
pub enum SleepError {
/// The final [`TaskHandle`] for this [`TaskSchedule`] has been dropped: the
/// task should exit.
#[error("All task handles dropped: task exiting.")]
ScheduleDropped,
}
/// A command sent from task handles to schedule objects.
#[derive(Copy, Clone)]
enum SchedulerCommand {
/// Run the task now.
Fire,
/// Run the task at the provided `Instant`.
FireAt(Instant),
/// Cancel a pending execution, if there is one.
Cancel,
/// Pause execution without cancelling any running timers. (Those timers
/// will fire after we resume execution.)
Suspend,
/// Resume execution. If there is a pending timer, start waiting for it again;
/// otherwise, fire immediately.
Resume,
}
/// A remotely-controllable trigger for recurring tasks.
///
/// This implements [`Stream`], and is intended to be used in a `while` loop; you should
/// wrap your recurring task in a `while schedule.next().await.is_some()` or similar.
#[pin_project(project = TaskScheduleP)]
pub struct TaskSchedule<R: SleepProvider> {
/// If we're waiting for a deadline to expire, the future for that.
sleep: Option<Pin<Box<R::SleepFuture>>>,
/// Receiver of scheduler commands from handles.
rx: UnboundedReceiver<SchedulerCommand>,
/// Runtime.
rt: R,
/// Whether or not to yield a result immediately when polled, once.
///
/// This is used to avoid having to create a `SleepFuture` with zero duration,
/// which is potentially a bit wasteful.
instant_fire: bool,
/// Whether we are currently "suspended". If we are suspended, we won't
/// start executing again till we're explicitly "resumed".
suspended: bool,
}
/// A handle used to control a [`TaskSchedule`].
///
/// When the final handle is dropped, the computation governed by the
/// `TaskSchedule` should terminate.
#[derive(Clone)]
pub struct TaskHandle {
/// Sender of scheduler commands to the corresponding schedule.
tx: UnboundedSender<SchedulerCommand>,
}
impl<R: SleepProvider> TaskSchedule<R> {
/// Create a new schedule, and corresponding handle.
pub fn new(rt: R) -> (Self, TaskHandle) {
let (tx, rx) = mpsc::unbounded();
(
Self {
sleep: None,
rx,
rt,
// Start off ready.
instant_fire: true,
suspended: false,
},
TaskHandle { tx },
)
}
/// Trigger the schedule after `dur`.
pub fn fire_in(&mut self, dur: Duration) {
self.instant_fire = false;
self.sleep = Some(Box::pin(self.rt.sleep(dur)));
}
/// Trigger the schedule instantly.
pub fn fire(&mut self) {
self.instant_fire = true;
self.sleep = None;
}
/// Wait until `Dur` has elapsed.
///
/// This call is equivalent to [`SleepProvider::sleep`], except that the
/// resulting future will respect calls to the functions on this schedule's
/// associated [`TaskHandle`].
///
/// Alternatively, you can view this function as equivalent to
/// `self.fire_in(dur); self.next().await;`, only with the intent made more
/// explicit.
///
/// If the associated [`TaskHandle`] for this schedule is suspended, then
/// this method will not return until the schedule is unsuspended _and_ the
/// timer elapses. If the associated [`TaskHandle`] is cancelled, then this
/// method will not return at all, until the schedule is re-activated by
/// [`TaskHandle::fire`] or [`TaskHandle::fire_at`].
///
/// Finally, if every associated [`TaskHandle`] has been dropped, then this
/// method will return an error.
pub async fn sleep(&mut self, dur: Duration) -> Result<(), SleepError> {
self.fire_in(dur);
self.next().await.ok_or(SleepError::ScheduleDropped)
}
/// As
/// [`sleep_until_wallclock`](crate::SleepProviderExt::sleep_until_wallclock),
/// but respect messages from this schedule's associated [`TaskHandle`].
pub async fn sleep_until_wallclock(&mut self, when: SystemTime) -> Result<(), SleepError> {
loop {
let (finished, delay) = crate::timer::calc_next_delay(self.rt.wallclock(), when);
self.sleep(delay).await?;
if finished {
return Ok(());
}
}
}
}
impl TaskHandle {
/// Trigger this handle's corresponding schedule now.
///
/// Returns `true` if the schedule still exists, and `false` otherwise.
pub fn fire(&self) -> bool {
self.tx.unbounded_send(SchedulerCommand::Fire).is_ok()
}
/// Trigger this handle's corresponding schedule at `instant`.
///
/// Returns `true` if the schedule still exists, and `false` otherwise.
pub fn fire_at(&self, instant: Instant) -> bool {
self.tx
.unbounded_send(SchedulerCommand::FireAt(instant))
.is_ok()
}
/// Cancel a pending firing of the handle's corresponding schedule.
///
/// Returns `true` if the schedule still exists, and `false` otherwise.
pub fn cancel(&self) -> bool {
self.tx.unbounded_send(SchedulerCommand::Cancel).is_ok()
}
/// Suspend execution of the corresponding schedule.
///
/// If the schedule is ready now, it will become pending; it won't become
/// ready again until `resume()` is called. If the schedule is waiting for a
/// timer, the timer will keep counting, but the schedule won't become ready
/// until the timer has elapsed _and_ `resume()` has been called.
///
/// Returns `true` if the schedule still exists, and `false` otherwise.
pub fn suspend(&self) -> bool {
self.tx.unbounded_send(SchedulerCommand::Suspend).is_ok()
}
/// Resume execution of the corresponding schedule.
///
/// This method undoes the effect of a call to `suspend()`: the schedule
/// will fire again if it is ready (or when it becomes ready).
///
/// This method won't cause the schedule to fire if it was already
/// cancelled. For that, use the `fire()` or fire_at()` methods.
///
/// Returns `true` if the schedule still exists, and `false` otherwise.
pub fn resume(&self) -> bool {
self.tx.unbounded_send(SchedulerCommand::Resume).is_ok()
}
}
// NOTE(eta): implemented on the *pin projection*, not the original type, because we don't want
// to require `R: Unpin`. Accordingly, all the fields are mutable references.
impl<R: SleepProvider> TaskScheduleP<'_, R> {
/// Handle an internal command.
fn handle_command(&mut self, cmd: SchedulerCommand) {
match cmd {
SchedulerCommand::Fire => {
*self.instant_fire = true;
*self.sleep = None;
}
SchedulerCommand::FireAt(instant) => {
let now = self.rt.now();
let dur = instant.saturating_duration_since(now);
*self.instant_fire = false;
*self.sleep = Some(Box::pin(self.rt.sleep(dur)));
}
SchedulerCommand::Cancel => {
*self.instant_fire = false;
*self.sleep = None;
}
SchedulerCommand::Suspend => {
*self.suspended = true;
}
SchedulerCommand::Resume => {
*self.suspended = false;
}
}
}
}
impl<R: SleepProvider> Stream for TaskSchedule<R> {
type Item = ();
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let mut this = self.project();
while let Poll::Ready(maybe_cmd) = this.rx.poll_next_unpin(cx) {
match maybe_cmd {
Some(c) => this.handle_command(c),
None => {
// All task handles dropped; return end of stream.
return Poll::Ready(None);
}
}
}
if *this.suspended {
return Poll::Pending;
}
if *this.instant_fire {
*this.instant_fire = false;
return Poll::Ready(Some(()));
}
if this
.sleep
.as_mut()
.map(|x| x.as_mut().poll(cx).is_ready())
.unwrap_or(false)
{
*this.sleep = None;
return Poll::Ready(Some(()));
}
Poll::Pending
}
}
// test_with_all_runtimes! only exists if these features are satisfied.
#[cfg(all(
test,
any(feature = "native-tls", feature = "rustls"),
any(feature = "tokio", feature = "async-std"),
not(miri), // Several of these use real SystemTime
))]
mod test {
use crate::scheduler::TaskSchedule;
use crate::{test_with_all_runtimes, SleepProvider};
use futures::FutureExt;
use futures::StreamExt;
use std::time::{Duration, Instant};
#[test]
fn it_fires_immediately() {
test_with_all_runtimes!(|rt| async move {
let (mut sch, _hdl) = TaskSchedule::new(rt);
assert!(sch.next().now_or_never().is_some());
});
}
#[test]
#[allow(clippy::unwrap_used)]
fn it_dies_if_dropped() {
test_with_all_runtimes!(|rt| async move {
let (mut sch, hdl) = TaskSchedule::new(rt);
drop(hdl);
assert!(sch.next().now_or_never().unwrap().is_none());
});
}
#[test]
fn it_fires_on_demand() {
test_with_all_runtimes!(|rt| async move {
let (mut sch, hdl) = TaskSchedule::new(rt);
assert!(sch.next().now_or_never().is_some());
assert!(sch.next().now_or_never().is_none());
assert!(hdl.fire());
assert!(sch.next().now_or_never().is_some());
assert!(sch.next().now_or_never().is_none());
});
}
#[test]
fn it_cancels_instant_firings() {
// NOTE(eta): this test very much assumes that unbounded channels will
// transmit things instantly. If it breaks, that's probably why.
test_with_all_runtimes!(|rt| async move {
let (mut sch, hdl) = TaskSchedule::new(rt);
assert!(sch.next().now_or_never().is_some());
assert!(sch.next().now_or_never().is_none());
assert!(hdl.fire());
assert!(hdl.cancel());
assert!(sch.next().now_or_never().is_none());
});
}
#[test]
fn it_fires_after_self_reschedule() {
test_with_all_runtimes!(|rt| async move {
let (mut sch, _hdl) = TaskSchedule::new(rt);
assert!(sch.next().now_or_never().is_some());
sch.fire_in(Duration::from_millis(100));
assert!(sch.next().now_or_never().is_none());
assert!(sch.next().await.is_some());
assert!(sch.next().now_or_never().is_none());
});
}
#[test]
fn it_fires_after_external_reschedule() {
test_with_all_runtimes!(|rt| async move {
let (mut sch, hdl) = TaskSchedule::new(rt);
assert!(sch.next().now_or_never().is_some());
hdl.fire_at(Instant::now() + Duration::from_millis(100));
assert!(sch.next().now_or_never().is_none());
assert!(sch.next().await.is_some());
assert!(sch.next().now_or_never().is_none());
});
}
// This test is disabled because it was flaky when the CI servers were
// heavily loaded. (See #545.)
//
// TODO: Let's fix this test and make it more reliable, then re-enable it.
#[test]
#[ignore]
fn it_cancels_delayed_firings() {
test_with_all_runtimes!(|rt| async move {
let (mut sch, hdl) = TaskSchedule::new(rt.clone());
assert!(sch.next().now_or_never().is_some());
hdl.fire_at(Instant::now() + Duration::from_millis(100));
assert!(sch.next().now_or_never().is_none());
rt.sleep(Duration::from_millis(50)).await;
assert!(sch.next().now_or_never().is_none());
hdl.cancel();
assert!(sch.next().now_or_never().is_none());
rt.sleep(Duration::from_millis(100)).await;
assert!(sch.next().now_or_never().is_none());
});
}
#[test]
fn last_fire_wins() {
test_with_all_runtimes!(|rt| async move {
let (mut sch, hdl) = TaskSchedule::new(rt.clone());
assert!(sch.next().now_or_never().is_some());
hdl.fire_at(Instant::now() + Duration::from_millis(100));
hdl.fire();
assert!(sch.next().now_or_never().is_some());
assert!(sch.next().now_or_never().is_none());
rt.sleep(Duration::from_millis(150)).await;
assert!(sch.next().now_or_never().is_none());
});
}
#[test]
fn suspend_and_resume_with_fire() {
test_with_all_runtimes!(|rt| async move {
let (mut sch, hdl) = TaskSchedule::new(rt.clone());
hdl.fire();
hdl.suspend();
assert!(sch.next().now_or_never().is_none());
hdl.resume();
assert!(sch.next().now_or_never().is_some());
});
}
#[test]
fn suspend_and_resume_with_sleep() {
test_with_all_runtimes!(|rt| async move {
let (mut sch, hdl) = TaskSchedule::new(rt.clone());
sch.fire_in(Duration::from_millis(100));
hdl.suspend();
assert!(sch.next().now_or_never().is_none());
hdl.resume();
assert!(sch.next().now_or_never().is_none());
assert!(sch.next().await.is_some());
});
}
#[test]
fn suspend_and_resume_with_nothing() {
test_with_all_runtimes!(|rt| async move {
let (mut sch, hdl) = TaskSchedule::new(rt.clone());
assert!(sch.next().now_or_never().is_some());
hdl.suspend();
assert!(sch.next().now_or_never().is_none());
hdl.resume();
});
}
}